Phase transitions in periodically driven macroscopic systems

被引:0
|
作者
Dutta, SB [1 ]
机构
[1] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 06期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the large-time behavior of a class of periodically driven macroscopic systems. We find, for a certain range of the parameters of either the system or the driving fields, the time-averaged asymptotic behavior effectively is that of certain other equilibrium systems. We then illustrate with a few examples how the conventional knowledge of the equilibrium systems can be made use of in choosing the driving fields to engineer new phases and to induce new phase transitions.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Entropy, macroscopic information, and phase transitions
    Parrondo, JMR
    UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2000, 511 : 314 - 325
  • [22] Fluctuational transitions in periodically-driven nonlinear oscillators
    Luchinsky, DG
    Khovanov, IA
    McClintock, PVE
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2000, (139): : 152 - 163
  • [23] Onsager Coefficients in Periodically Driven Systems
    Proesmans, Karel
    van den Broeck, Christian
    PHYSICAL REVIEW LETTERS, 2015, 115 (09)
  • [24] Activated escape of periodically driven systems
    Dykman, MI
    Golding, B
    McCann, LI
    Smelyanskiy, VN
    Luchinsky, DG
    Mannella, R
    McClintock, PVE
    CHAOS, 2001, 11 (03) : 587 - 594
  • [25] Effective Hamiltonians for periodically driven systems
    Rahav, S
    Gilary, I
    Fishman, S
    PHYSICAL REVIEW A, 2003, 68 (01):
  • [26] Anderson Localization for Periodically Driven Systems
    Raphael Ducatez
    François Huveneers
    Annales Henri Poincaré, 2017, 18 : 2415 - 2446
  • [27] PERIODICALLY DRIVEN STOCHASTIC-SYSTEMS
    JUNG, P
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 234 (4-5): : 175 - 295
  • [28] Random organization in periodically driven systems
    Laurent Corté
    P. M. Chaikin
    J. P. Gollub
    D. J. Pine
    Nature Physics, 2008, 4 : 420 - 424
  • [30] Boundary-driven phase transitions in open driven systems with an umbilic point
    Popkov, Vladislav
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 216 (01): : 139 - 151