Plasma equilibrium with fast ion orbit width, pressure anisotropy, and toroidal flow effects

被引:6
|
作者
Gorelenkov, N. N. [1 ]
Zakharov, L. E. [2 ]
机构
[1] Princeton Univ, PPPL, POB 451, Princeton, NJ 08543 USA
[2] LiWFusion, POB 2391, Princeton, NJ 08543 USA
关键词
energetic particles; plasma equilibrium; pressure anisotropy; TOKAMAK; STABILITY; BEAM; MHD; TRANSPORT; ROTATION; MODE;
D O I
10.1088/1741-4326/aac09d
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We formulate the problem of tokamak plasma equilibrium including the toroidal flow and fast ion (or energetic particle, EP) pressure anisotropy and the finite drift orbit width (FOW) effects. The problem is formulated via the standard Grad-Shafranov equation (GShE) amended by the solvability condition which imposes physical constraints on allowed spacial dependencies of the anisotropic pressure. The GShE problem employs the pressure coupling scheme and includes the dominant diagonal terms and non-diagonal corrections to the standard pressure tensor. The anisotropic tensor elements are obtained via the distribution function represented in the factorized form via the constants of motion. Considered effects on the plasma equilibrium are estimated analytically, if possible, to understand their importance for GShE tokamak plasma problem. The novelty of the proposed approach is in the way FOW is included into the GShE via the non-diagonal pressure tensor, factorized distribution function of the fast ions representation and in the prescription of the spacial dependence of P-perpendicular to given the spacial dependence of P-parallel to .
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Finite orbit width effects on ion cyclotron heating and current drive
    Hellsten, T
    Carlsson, J
    Eriksson, LG
    Hedin, J
    Mantsinen, M
    THEORY OF FUSION PLASMAS, 1999, 18 : 131 - 144
  • [22] Finite orbit width effects on turbulent transport of ion parallel momentum
    Li, Yang
    PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (10)
  • [23] Toroidal plasma acceleration due to NBI fast ion losses in LTX-β
    Hughes, P. E.
    Capecchi, W.
    Elliott, D. B.
    Zakharov, L. E.
    Bell, R. E.
    Hansen, C.
    Boyle, D. P.
    Gorelenkov, S. N.
    Majeski, R.
    Kaita, R.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (08)
  • [24] Toroidal ion temperature gradient driven instability in plasma with shear flow
    Mikhailenko, VS
    Weiland, J
    PHYSICS OF PLASMAS, 2002, 9 (02) : 529 - 535
  • [25] Effects of toroidal rotation and ion collisional viscosity on low-frequency zonal flow in tokamak plasma
    You Chen
    Jun Yu
    Bao-yi Xie
    Lan Yin
    Dong Xiang
    Xue-yu Gong
    Journal of the Korean Physical Society, 2024, 84 : 604 - 609
  • [26] Effects of toroidal rotation and ion collisional viscosity on low-frequency zonal flow in tokamak plasma
    Chen, You
    Yu, Jun
    Xie, Bao-yi
    Yin, Lan
    Xiang, Dong
    Gong, Xue-yu
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2024, 84 (08) : 604 - 609
  • [27] Ion acoustic cnoidal waves in a magnetized plasma in the presence of ion pressure anisotropy
    Khalid, Muhammad
    Rahman, Ata-ur
    ASTROPHYSICS AND SPACE SCIENCE, 2019, 364 (02)
  • [28] Finite ion orbit width effect on the neoclassical tearing mode threshold in a tokamak plasma
    Imada, K.
    Wilson, H. R.
    Connor, J. W.
    Dudkovskaia, A., V
    Hill, P.
    NUCLEAR FUSION, 2019, 59 (04)
  • [29] Ion acoustic cnoidal waves in a magnetized plasma in the presence of ion pressure anisotropy
    Muhammad Khalid
    Ata-ur Rahman
    Astrophysics and Space Science, 2019, 364
  • [30] Helically symmetric equilibria with pressure anisotropy and incompressible plasma flow
    Evangelias, A.
    Kuiroukidis, A.
    Throumoulopoulos, G. N.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (02)