Sparse 0-1 matrices and forbidden hypergraphs

被引:5
|
作者
Bertram-Kretzberg, C [1 ]
Hofmeister, T [1 ]
Lefmann, H [1 ]
机构
[1] Univ Dortmund, Lehrstuhl Informat 2, D-44221 Dortmund, Germany
来源
关键词
D O I
10.1017/S0963548399004058
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of determining the maximum number N(m,k,r) of columns of a 0-1 matrix with m rows and exactly r ones in each column such that every k columns are linearly independent over Z(2). For fixed integers k greater than or equal to 4 and r greater than or equal to 2, where k is even and gcd(k - 1, r) = 1, we prove the lower bound N(m,k,r) = Omega(m(kr/2(k-1)) . (ln m)(1/k-1)). This improves on earlier results from [14] by a factor Theta((ln m)(1/k-1)). Moreover, we describe a polynomial time algorithm achieving this new lower bound.
引用
收藏
页码:417 / 427
页数:11
相关论文
共 50 条