Strongly nonlinear Gagliardo-Nirenberg inequality in Orlicz spaces and Boyd indices

被引:7
|
作者
Capone, Claudia [1 ]
Fiorenza, Alberto [1 ,2 ]
Kalamajska, Agnieszka [3 ,4 ]
机构
[1] CNR, Ist Applicaz Calcolo Mauro Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[2] Univ Napoli Federico II, Dipartimento Architettura, Via Monteoliveto 3, I-80134 Naples, Italy
[3] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[4] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00956 Warsaw, Poland
关键词
Gagliardo-Nirenberg inequalities; interpolation inequalities; capacities; isoperimetric inequalities; INTERPOLATION INEQUALITIES; SOBOLEV SPACES;
D O I
10.4171/RLM/755
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a N-function A and a continuous function h satisfying certain assumptions, we derive the inequality integral(R) A(vertical bar f' (x)vertical bar h(f(x))) dx <= C-1 integral(R) A(C-2 (p) root vertical bar Mf"(x)T-h,T-p (f,x)vertical bar. h(f(x))dx, with constants C-1, C-2 independent of f, where f >= 0 belongs locally to the Sobolev space W-2,W-1 (R), f' has compact support, p > 1 is smaller than the lower Boyd index of A, T-h,(p)(.) is certain nonlinear transform depending of h but not of A and M denotes the Hardy- Littlewood maximal function. Moreover, we show that when h=1, then Mf" can be improved by f". This inequality generalizes a previous result by the third author and Peszek, which was dealing with p = 2.
引用
收藏
页码:119 / 141
页数:23
相关论文
共 50 条
  • [31] On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space
    Sawano, Yoshihiro
    Wadade, Hidemitsu
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (01) : 20 - 47
  • [32] Detailed Proof of Classical Gagliardo-Nirenberg Interpolation Inequality with Historical Remarks
    Fiorenza, Alberto
    Formica, Maria Rosaria
    Roskovec, Tomas
    Soudsky, Filip
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2021, 40 (02): : 217 - 236
  • [33] Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Sawano, Yoshihiro
    Shimomura, Tetsu
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2013, 65 (02) : 633 - 670
  • [34] Remarks on Gagliardo-Nirenberg type inequality with critical Sobolev space and BMO
    Kozono, Hideo
    Wadade, Hidemitsu
    MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (04) : 935 - 950
  • [35] Vector-valued Sobolev spaces and Gagliardo-Nirenberg inequalities
    Schmeisser, HJ
    Sickel, W
    Nonlinear Elliptic and Parabolic Problems: A SPECIAL TRIBUTE TO THE WORK OF HERBERT AMANN, MICHEL CHIPOT AND JOACHIM ESCHER, 2005, 64 : 463 - 472
  • [36] Generalised Gagliardo-Nirenberg Inequalities Using Weak Lebesgue Spaces and BMO
    McCormick, David S.
    Robinson, James C.
    Rodrigo, Jose L.
    MILAN JOURNAL OF MATHEMATICS, 2013, 81 (02) : 265 - 289
  • [37] Gagliardo-Nirenberg, Trudinger-Moser and Morrey inequalities on Dirichlet spaces
    Ruiz, Patricia Alonso
    Baudoin, Fabrice
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (02)
  • [38] A SHARP GAGLIARDO-NIRENBERG INEQUALITY AND ITS APPLICATION TO FRACTIONAL PROBLEMS WITH INHOMOGENEOUS NONLINEARITY
    Bhimani, Divyang G.
    Hajaiej, Hichem
    Haque, Saikatul
    LUo, Tingjian
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2023, 12 (01): : 362 - 390
  • [39] On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms
    Maz'ya, V
    Shaposhnikova, T
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (09): : 877 - 884
  • [40] On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space
    Yoshihiro Sawano
    Hidemitsu Wadade
    Journal of Fourier Analysis and Applications, 2013, 19 : 20 - 47