Strongly nonlinear Gagliardo-Nirenberg inequality in Orlicz spaces and Boyd indices

被引:7
|
作者
Capone, Claudia [1 ]
Fiorenza, Alberto [1 ,2 ]
Kalamajska, Agnieszka [3 ,4 ]
机构
[1] CNR, Ist Applicaz Calcolo Mauro Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[2] Univ Napoli Federico II, Dipartimento Architettura, Via Monteoliveto 3, I-80134 Naples, Italy
[3] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[4] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00956 Warsaw, Poland
关键词
Gagliardo-Nirenberg inequalities; interpolation inequalities; capacities; isoperimetric inequalities; INTERPOLATION INEQUALITIES; SOBOLEV SPACES;
D O I
10.4171/RLM/755
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a N-function A and a continuous function h satisfying certain assumptions, we derive the inequality integral(R) A(vertical bar f' (x)vertical bar h(f(x))) dx <= C-1 integral(R) A(C-2 (p) root vertical bar Mf"(x)T-h,T-p (f,x)vertical bar. h(f(x))dx, with constants C-1, C-2 independent of f, where f >= 0 belongs locally to the Sobolev space W-2,W-1 (R), f' has compact support, p > 1 is smaller than the lower Boyd index of A, T-h,(p)(.) is certain nonlinear transform depending of h but not of A and M denotes the Hardy- Littlewood maximal function. Moreover, we show that when h=1, then Mf" can be improved by f". This inequality generalizes a previous result by the third author and Peszek, which was dealing with p = 2.
引用
收藏
页码:119 / 141
页数:23
相关论文
共 50 条