RANSAC-SVM for Large-Scale Datasets

被引:0
|
作者
Nishida, Kenji [1 ]
Kurita, Takio [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Neurosci Res Inst, Tsukuba, Ibaraki 3058568, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support Vector Machines (SVMs), though accurate, are still difficult to solve large-scale applications, due to the computational and storage requirement. To relieve this problem, we propose RANSAC-SVM method, which trains a number of small SVMs for randomly selected subsets of training set, while tuning their parameters to fit SVMs to whole training set. RANSAC-SVM achieves good generalization performance, which close to the Bayesian estimation, with small subset of the training samples, and outperforms the full SVM solution in some condition.
引用
收藏
页码:3767 / 3770
页数:4
相关论文
共 50 条
  • [41] Datasets, tasks, and training methods for large-scale hypergraph learning
    Kim, Sunwoo
    Lee, Dongjin
    Kim, Yul
    Park, Jungho
    Hwang, Taeho
    Shin, Kijung
    DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 37 (06) : 2216 - 2254
  • [42] Classifying Call Profiles in Large-scale Mobile Traffic Datasets
    Naboulsi, Diala
    Stanica, Razvan
    Fiore, Marco
    2014 PROCEEDINGS IEEE INFOCOM, 2014, : 1806 - 1814
  • [43] Testing for changes in biomass dynamics in large-scale forest datasets
    Rutishauser, Ervan
    Wright, Stuart J.
    Condit, Richard
    Hubbell, Stephen P.
    Davies, Stuart J.
    Muller-Landau, Helene C.
    GLOBAL CHANGE BIOLOGY, 2020, 26 (03) : 1485 - 1498
  • [44] Learning Bayesian Network Structure from Large-scale Datasets
    Hong, Yu
    Xia, Xiaoling
    Le, Jiajin
    Zhou, Xiangdong
    2016 FOURTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD 2016), 2016, : 258 - 264
  • [45] Towards Matching User Mobility Traces in Large-Scale Datasets
    Kondor, Daniel
    Hashemian, Behrooz
    de Montjoye, Yves-Alexandre
    Ratti, Carlo
    IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (04) : 714 - 726
  • [46] Optimal subsampling for generalized additive models on large-scale datasets
    Li, Lili
    Liu, Bingfan
    Liu, Xiaodi
    Shi, Haolun
    Cao, Jiguo
    STATISTICS AND COMPUTING, 2025, 35 (01)
  • [47] A toolkit for analysing large-scale plant small RNA datasets
    Moxon, Simon
    Schwach, Frank
    Dalmay, Tamas
    MacLean, Dan
    Studholme, David J.
    Moulton, Vincent
    BIOINFORMATICS, 2008, 24 (19) : 2252 - 2253
  • [48] Workload-aware anonymization techniques for large-scale datasets
    LeFevre, Kristen
    DeWitt, David J.
    Ramakrishnan, Raghu
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2008, 33 (03):
  • [49] Are open set classification methods effective on large-scale datasets?
    Roady, Ryne
    Hayes, Tyler L.
    Kemker, Ronald
    Gonzales, Ayesha
    Kanan, Christopher
    PLOS ONE, 2020, 15 (09):
  • [50] Evaluating precipitation datasets for large-scale distributed hydrological modelling
    Mazzoleni, M.
    Brandimarte, L.
    Amaranto, A.
    JOURNAL OF HYDROLOGY, 2019, 578