RANSAC-SVM for Large-Scale Datasets

被引:0
|
作者
Nishida, Kenji [1 ]
Kurita, Takio [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Neurosci Res Inst, Tsukuba, Ibaraki 3058568, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support Vector Machines (SVMs), though accurate, are still difficult to solve large-scale applications, due to the computational and storage requirement. To relieve this problem, we propose RANSAC-SVM method, which trains a number of small SVMs for randomly selected subsets of training set, while tuning their parameters to fit SVMs to whole training set. RANSAC-SVM achieves good generalization performance, which close to the Bayesian estimation, with small subset of the training samples, and outperforms the full SVM solution in some condition.
引用
收藏
页码:3767 / 3770
页数:4
相关论文
共 50 条
  • [1] A fast classification strategy for SVM on the large-scale high-dimensional datasets
    I-Jing Li
    Jiunn-Lin Wu
    Chih-Hung Yeh
    Pattern Analysis and Applications, 2018, 21 : 1023 - 1038
  • [2] A fast classification strategy for SVM on the large-scale high-dimensional datasets
    Li, I-Jing
    Wu, Jiunn-Lin
    Yeh, Chih-Hung
    PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (04) : 1023 - 1038
  • [3] Parallel incremental power mean SVM for the classification of large-scale image datasets
    Thanh-Nghi Doan
    Thanh-Nghi Do
    Poulet, Francois
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2014, 3 (02) : 89 - 96
  • [4] LS-GKM: a new gkm-SVM for large-scale datasets
    Lee, Dongwon
    BIOINFORMATICS, 2016, 32 (14) : 2196 - 2198
  • [5] A Distributed Instance-weighted SVM Algorithm on Large-scale Imbalanced Datasets
    Wang, Xiaoguang
    Liu, Xuan
    Matwin, Stan
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014,
  • [7] Visualization of large-scale trajectory datasets
    Zachar, Gergely
    2023 CYBER-PHYSICAL SYSTEMS AND INTERNET-OF-THINGS WEEK, CPS-IOT WEEK WORKSHOPS, 2023, : 152 - 157
  • [8] Learning to Index in Large-Scale Datasets
    Prayoonwong, Amorntip
    Wang, Cheng-Hsien
    Chiu, Chih-Yi
    MULTIMEDIA MODELING, MMM 2018, PT I, 2018, 10704 : 305 - 316
  • [9] MedDialog: Large-scale Medical Dialogue Datasets
    Zeng, Guangtao
    Yang, Wenmian
    Ju, Zeqian
    Yang, Yue
    Wang, Sicheng
    Zhang, Ruisi
    Zhou, Meng
    Zeng, Jiaqi
    Dong, Xiangyu
    Zhang, Ruoyu
    Fang, Hongchao
    Zhu, Penghui
    Chen, Shu
    Xie, Pengtao
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 9241 - 9250
  • [10] Towards algorithmic analytics for large-scale datasets
    Bzdok, Danilo
    Nichols, Thomas E.
    Smith, Stephen M.
    NATURE MACHINE INTELLIGENCE, 2019, 1 (07) : 296 - 306