On the algorithmic complexity of Minkowski's reconstruction theorem

被引:7
|
作者
Gritzmann, P [1 ]
Hufnagel, A [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-80290 Munich, Germany
关键词
D O I
10.1112/S0024610799007413
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1903 Minkowski showed that, given pairwise different unit vectors u(1),...,u(m) in Euclidean n-space R(n) which span R(n), and positive reals u(1),...,u(m) such that Sigma(t-1)(m) u(i) u(i) = 0, there exists a polytope P in R(n), unique up to translation, with outer unit facet normals u(1),...,u(m) and corresponding facet volumes u(1),...,u(m). This paper deals with the computational complexity of the underlying reconstruction problem, to determine a presentation of P as the intersection of its facet halfspaces. After a natural reformulation that reflects the fact that the binary Turing-machine model of computation is employed, it is shown that this reconstruction problem can be solved in polynomial time when the dimension is fixed but is #P-hard when the dimension is part of the input. The problem of 'Minkowski reconstruction' has various applications in image processing, and the underlying data structure is relevant for other algorithmic questions in computational convexity.
引用
收藏
页码:1081 / 1100
页数:20
相关论文
共 50 条
  • [21] WEIGHTED MINKOWSKI'S EXISTENCE THEOREM AND PROJECTION BODIES
    Kryvonos, Liudmyla
    Langharst, Dylan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 8447 - 8493
  • [22] Minkowski's second theorem over a simple algebra
    Watanabe, Takao
    MONATSHEFTE FUR MATHEMATIK, 2006, 149 (02): : 155 - 172
  • [23] Algorithmic complexity for psychology: a user-friendly implementation of the coding theorem method
    Gauvrit, Nicolas
    Singmann, Henrik
    Soler-Toscano, Fernando
    Zenil, Hector
    BEHAVIOR RESEARCH METHODS, 2016, 48 (01) : 314 - 329
  • [24] Algorithmic complexity for psychology: a user-friendly implementation of the coding theorem method
    Nicolas Gauvrit
    Henrik Singmann
    Fernando Soler-Toscano
    Hector Zenil
    Behavior Research Methods, 2016, 48 : 314 - 329
  • [25] MODIFYING MINKOWSKI THEOREM
    SCOTT, PR
    JOURNAL OF NUMBER THEORY, 1988, 29 (01) : 13 - 20
  • [26] A Minkowski Theorem for Quasicrystals
    Guiheneuf, Pierre-Antoine
    Joly, Emilien
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (03) : 596 - 613
  • [27] A generalization of a theorem of Minkowski
    Mazur, M
    ACTA ARITHMETICA, 2001, 99 (03) : 267 - 276
  • [28] Random minkowski theorem
    Margulis, G. A.
    PROBLEMS OF INFORMATION TRANSMISSION, 2011, 47 (04) : 398 - 402
  • [29] A Minkowski Theorem for Quasicrystals
    Pierre-Antoine Guihéneuf
    Émilien Joly
    Discrete & Computational Geometry, 2017, 58 : 596 - 613
  • [30] Random minkowski theorem
    G. A. Margulis
    Problems of Information Transmission, 2011, 47 : 398 - 402