Fractal structures of normal and anomalous diffusion in nonlinear nonhyperbolic dynamical systems

被引:30
|
作者
Korabel, N [1 ]
Klages, R [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevLett.89.214102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A paradigmatic nonhyperbolic dynamical system exhibiting deterministic diffusion is the smooth nonlinear climbing sine map. We find that this map generates fractal hierarchies of normal and anomalous diffusive regions as functions of the control parameter. The measure of these self-similar sets is positive, parameter dependent, and in case of normal diffusion it shows a fractal diffusion coefficient. By using a Green-Kubo formula we link these fractal structures to the nonlinear microscopic dynamics in terms of fractal Takagi-like functions.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Signatures of normal and anomalous diffusion in nanotube systems by NMR
    Dvoyashkin, M.
    Wang, A.
    Katihar, A.
    Zang, J.
    Yucelen, G. I.
    Nair, S.
    Sholl, D. S.
    Bowers, C. R.
    Vasenkov, S.
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 178 : 119 - 122
  • [22] Anomalous scaling and solitary waves in systems with nonlinear diffusion
    Hansen, Alex
    Skagerstam, Bo-Sture
    Tora, Glenn
    [J]. PHYSICAL REVIEW E, 2011, 83 (05)
  • [23] DYNAMICAL BEHAVIOR OF FRACTAL STRUCTURES
    WEBMAN, I
    GREST, GS
    [J]. PHYSICAL REVIEW B, 1985, 31 (03): : 1689 - 1692
  • [24] ANOMALOUS ELECTRON-DIFFUSION IN FRACTAL SYSTEMS AT LOW-TEMPERATURES
    DUMPICH, G
    [J]. FESTKORPERPROBLEME-ADVANCES IN SOLID STATE PHYICS, 1991, 31 : 59 - 75
  • [25] USE OF COMB-LIKE MODELS TO MIMIC ANOMALOUS DIFFUSION ON FRACTAL STRUCTURES
    WEISS, GH
    HAVLIN, S
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06): : 941 - 947
  • [26] LOCAL STABILITY OF CONTINUOUS DYNAMICAL SYSTEMS IN THE PRESENCE OF NONHYPERBOLIC EQUILIBRIA
    Balibrea, F.
    Martinez, A.
    Valverde, J. C.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (03): : 1051 - 1057
  • [27] ANOMALOUS DIFFUSION IN FRACTAL POROUS MEDIUM
    王子亭
    [J]. Applied Mathematics and Mechanics(English Edition), 2000, (10) : 1145 - 1152
  • [28] Anomalous diffusion in fractal porous medium
    Wang, ZT
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2000, 21 (10) : 1145 - 1152
  • [29] The onset of chaos in nonlinear dynamical systems determined with a new fractal technique
    Musielak, DE
    Musielak, ZE
    Kennamer, KS
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2005, 13 (01) : 19 - 31
  • [30] Fractal-Entropy Analysis of the Results of Measurements in Nonlinear Dynamical Systems
    Yu. P. Machekhin
    Yu. S. Kurskoy
    [J]. Measurement Techniques, 2014, 57 : 609 - 614