Fractal structures of normal and anomalous diffusion in nonlinear nonhyperbolic dynamical systems

被引:30
|
作者
Korabel, N [1 ]
Klages, R [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevLett.89.214102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A paradigmatic nonhyperbolic dynamical system exhibiting deterministic diffusion is the smooth nonlinear climbing sine map. We find that this map generates fractal hierarchies of normal and anomalous diffusive regions as functions of the control parameter. The measure of these self-similar sets is positive, parameter dependent, and in case of normal diffusion it shows a fractal diffusion coefficient. By using a Green-Kubo formula we link these fractal structures to the nonlinear microscopic dynamics in terms of fractal Takagi-like functions.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] FRACTAL DESCRIPTION OF ANOMALOUS DIFFUSION IN DYNAMICAL SYSTEMS
    Klafter, J.
    Zumofen, G.
    Shlesinger, M. F.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1993, 1 (03) : 389 - 404
  • [2] ANOMALOUS DIFFUSION OF CLUMPS IN NONLINEAR DYNAMICAL-SYSTEMS
    MERLO, V
    PETTINI, M
    VULPIANI, A
    [J]. LETTERE AL NUOVO CIMENTO, 1985, 44 (03): : 163 - 171
  • [3] ON NONLINEAR DIFFUSION IN FRACTAL STRUCTURES
    PASCAL, JP
    PASCAL, H
    [J]. PHYSICA A, 1994, 208 (3-4): : 351 - 358
  • [4] Anomalous diffusion in classical dynamical systems
    Artuso, R
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 290 (1-2): : 37 - 47
  • [5] Anomalous Diffusion in Random Dynamical Systems
    Sato, Yuzuru
    Klages, Rainer
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (17)
  • [6] Standard and anomalous diffusion in dynamical systems
    Vergassola, M
    [J]. ANALYSIS AND MODELLING OF DISCRETE DYNAMICAL SYSTEMS, 1998, 1 : 229 - 246
  • [7] Anomalous diffusion of isolated flow singularities and of fractal or spiral structures
    Vassilicos, JC
    [J]. PHYSICAL REVIEW E, 1995, 52 (06) : R5753 - R5756
  • [8] Simple deterministic dynamical systems with fractal diffusion coefficients
    Klages, R
    Dorfman, JR
    [J]. PHYSICAL REVIEW E, 1999, 59 (05) : 5361 - 5383
  • [9] Fractal diffusion in smooth dynamical systems with virtual invariant curves
    Chirikov, BV
    Vecheslavov, VV
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2002, 95 (03) : 560 - 571
  • [10] Fractal diffusion in smooth dynamical systems with virtual invariant curves
    B. V. Chirikov
    V. V. Vecheslavov
    [J]. Journal of Experimental and Theoretical Physics, 2002, 95 : 560 - 571