A tight bound for EMAC

被引:0
|
作者
Pietrzak, Krzysztof [1 ]
机构
[1] Ecole Normale Super, Dept Informat, F-75231 Paris, France
来源
AUTOMATA, LANGAGES AND PROGRAMMING, PT 2 | 2006年 / 4052卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a new upper bound on the advantage of any adversary for distinguishing the encrypted CBC-MAC (EMAC) based on random permutations from a random function. Our proof uses techniques recently introduced in [BPR05], which again were inspired by [DGH+04]. The bound we prove is tight - in the sense that it matches the advantage of known attacks up to a constant factor - for a wide range of the parameters: let n denote the block-size, q the number of queries the adversary is allowed to make and f an upper bound on the length (i.e. number of blocks) of the messages, then for l <= 2(n/8) and q >= l(2) the advantage is in the order of q(2)/2(n) (and in particular independent of l). This improves on the previous bound of q(2)l(Theta(1/ln In l))/2(n) from [BPR05] and matches the trivial attack (which thus is basically optimal) where one simply asks random queries until a collision is found.
引用
收藏
页码:168 / 179
页数:12
相关论文
共 50 条
  • [41] A tight bound for stochastic submodular cover
    Hellerstein L.
    Kletenik D.
    Parthasarathy S.
    1600, AI Access Foundation (71): : 347 - 370
  • [42] A Tight Upper Bound on Mutual Information
    Hledik, Michal
    Sokolowski, Thomas R.
    Tkacik, Gasper
    2019 IEEE INFORMATION THEORY WORKSHOP (ITW), 2019, : 70 - 74
  • [43] A tight upper bound on discrete entropy
    Division of Communications Engineering, School of EEE, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
    IEEE Int Symp Inf Theor Proc, 2157, (249):
  • [44] A tight upper bound on discrete entropy
    Mow, WH
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (02) : 775 - 778
  • [45] 来自深冬-eMac
    姬东琪
    电子测试, 2003, (01) : 86 - 87
  • [46] A tight upper bound on the number of candidate patterns
    Geerts, F
    Goethals, B
    Van den Bussche, J
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 155 - 162
  • [47] A TIGHT BOUND FOR BLACK AND WHITE PEBBLES ON THE PYRAMID
    KLAWE, MM
    JOURNAL OF THE ACM, 1985, 32 (01) : 218 - 228
  • [48] Tight performance bound of AFBk bin packing
    Zhang G.
    Yue M.
    Acta Mathematicae Applicatae Sinica, 1997, 13 (4) : 443 - 446
  • [49] Tight Bound for the Number of Distinct Palindromes in a Tree
    Gawrychowski, Pawel
    Kociumaka, Tomasz
    Rytter, Wojciech
    Walen, Tomasz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [50] A New Tight Upper Bound on the Entropy of Sums
    Fahs, Jihad
    Abou-Faycal, Ibrahim
    ENTROPY, 2015, 17 (12) : 8312 - 8324