Empirical Evaluation of Graph Partitioning Using Spectral Embeddings and Flow

被引:0
|
作者
Lang, Kevin J. [1 ]
Mahoney, Michael W. [2 ]
Orecchia, Lorenzo [3 ]
机构
[1] Yahoo Res, Santa Clara, CA USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Univ Calif Berkeley, Berkeley, CA 94720 USA
来源
基金
美国国家科学基金会;
关键词
ALGORITHMS; QUALITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present initial results from the first empirical evaluation of a graph partitioning algorithm inspired by the Arora-Rao-Vazirani algorithm of [5], which combines spectral and flow methods in a novel way. We have studied the parameter space of this new algorithm, e.g, examining the extent to which different parameter settings interpolate between a more spectral and a more flow-based approach, and we have compared results of this algorithm to results from previously known and optimized algorithms such as METIS.
引用
收藏
页码:197 / +
页数:2
相关论文
共 50 条
  • [31] Efficient Nuclei Segmentation based on Spectral Graph Partitioning
    Lee, Gwo Giun
    Hung, Shi-Yu
    Wang, Tai-Ping
    Chen, Chun-Fu
    Sun, Chi-Kuang
    Liao, Yi-Hua
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 2723 - 2726
  • [32] Spectral bounds for graph partitioning with prescribed partition sizes
    Anjos, Miguel F.
    Neto, Jose
    DISCRETE APPLIED MATHEMATICS, 2019, 269 : 200 - 210
  • [33] SpecP: A tool for spectral partitioning of protein contact graph
    Namboodiri, Saritha
    Kripadas, K.
    BIOINFORMATION, 2013, 9 (10) : 545 - 548
  • [34] Segmentation of polarimetric SAR data using contour information via spectral graph partitioning
    Ersahin, Kaan
    Cumming, Ian G.
    Ward, Rabab K.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 2240 - 2243
  • [35] Empirical Comparison of Graph Embeddings for Trust-Based Collaborative Filtering
    Duricic, Tomislav
    Hussain, Hussain
    Lacic, Emanuel
    Kowald, Dominik
    Helic, Denis
    Lex, Elisabeth
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2020), 2020, 12117 : 181 - 191
  • [36] Are Graph Embeddings the Panacea? An Empirical Survey from the Data Fitness Perspective
    Sun, Qiang
    Huynh, Du Q.
    Reynolds, Mark
    Liu, Wei
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 405 - 417
  • [37] Web tool for graph embeddings representation techniques evaluation
    Ivanoska, I.
    Milenkoski, M.
    Kalajdziski, S.
    Trivodaliev, K.
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 983 - 988
  • [38] Distributed Training of Embeddings using Graph Analytics
    Gill, Gurbinder
    Dathathri, Roshan
    Maleki, Saeed
    Musuvathi, Madan
    Mytkowicz, Todd
    Saarikivi, Olli
    2021 IEEE 35TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2021, : 973 - 983
  • [39] Application and evaluation of knowledge graph embeddings in biomedical data
    Alshahrani, Mona
    Thafar, Maha A.
    Essack, Magbubah
    PEERJ COMPUTER SCIENCE, 2021, 7 : 1 - 28
  • [40] Community detection in networks using graph embeddings
    Tandon, Aditya
    Albeshri, Aiiad
    Thayananthan, Vijey
    Alhalabi, Wadee
    Radicchi, Filippo
    Fortunato, Santo
    PHYSICAL REVIEW E, 2021, 103 (02)