Renormalization of asymmetric unimodal maps

被引:0
|
作者
Osbaldestin, AH [1 ]
Mestel, BD [1 ]
机构
[1] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We carry out a renormalization analysis for unimodal maps possessing a degree-d critical point with differing left and right dth derivatives. More precisely, we prove, using Herglotz function techniques, the existence of a family of period-two points of the Feigenbaum renormalization operator. These universal functions land their associated scaling exponents) are parametrized by a "modulus of discontinuity", mu, measuring the difference in dth derivatives, as well as the degree d. The asymptotic behaviour in the Limit d --> 1+ is also determined.
引用
收藏
页码:369 / 374
页数:6
相关论文
共 50 条
  • [41] Metric attractors for smooth unimodal maps
    Graczyk, J
    Sands, D
    Swiatek, G
    ANNALS OF MATHEMATICS, 2004, 159 (02) : 725 - 740
  • [42] Robust chaos in smooth unimodal maps
    Andrecut, M
    Ali, MK
    PHYSICAL REVIEW E, 2001, 64 (02): : 3
  • [43] Countable limit sets of unimodal maps
    T. Inaba
    Y. Kano
    Journal of Dynamical and Control Systems, 2010, 16 : 319 - 328
  • [44] DISTORTION OF S-UNIMODAL MAPS
    GUCKENHEIMER, J
    JOHNSON, S
    ANNALS OF MATHEMATICS, 1990, 132 (01) : 71 - 130
  • [45] A NOTE ON THE UNIMODAL FEIGENBAUM'S MAPS
    Huang, Guifeng
    Wang, Lidong
    Liao, Gongfu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (14): : 3101 - 3111
  • [46] MAXIMAL WORDS CONNECTED WITH UNIMODAL MAPS
    SUN, LC
    HELMBERG, G
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1988, 4 (04): : 351 - 380
  • [47] COMPUTING THE TOPOLOGICAL ENTROPY OF UNIMODAL MAPS
    Dilao, Rui
    Amigo, Jose
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06):
  • [48] Robust chaos in polynomial unimodal maps
    Pérez, G
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (07): : 2431 - 2437
  • [49] Topological properties of Lorenz maps derived from unimodal maps
    Anusic, Ana
    Bruin, Henk
    Cinc, Jernej
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (08) : 1174 - 1191
  • [50] Renormalization of Henon Maps
    Lyubich, M.
    Martens, M.
    DYNAMICS, GAMES AND SCIENCE I, 2011, 1 : 597 - 618