Symbolic clustering of large datasets

被引:2
|
作者
Lechevallier, Yves
Verde, Rosanna [1 ]
de Carvalho, Francisco de A. T. [2 ]
机构
[1] Seconda Univ Napoli, Dip Strateg Aziendali & Metod Quantit, I-81043 Capua, CE, Italy
[2] Cidade Univ, Ctr Informat, BR-50740540 Recife, PE, Brazil
来源
DATA SCIENCE AND CLASSIFICATION | 2006年
关键词
D O I
10.1007/3-540-34416-0_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an approach to cluster large datasets that integrates the Kohonen Self Organizing Maps (SOM) with a dynamic clustering algorithm of symbolic data (SCLUST). A preliminary data reduction using SOM algorithm is performed. As a result, the individual measurements are replaced by micro-clusters. These micro-clusters are then grouped in a few clusters which are modeled by symbolic objects. By computing the extension of these symbolic objects, symbolic clustering algorithm allows discovering the natural classes. An application on a real data set shows the usefulness of this methodology.
引用
收藏
页码:193 / +
页数:3
相关论文
共 50 条
  • [31] Stamantic clustering: Combining statistical and semantic features for clustering of large text datasets
    Mehta, Vivek
    Bawa, Seema
    Singh, Jasmeet
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 174
  • [32] A Note on Fuzzy Joint Points Clustering Methods for Large Datasets
    Nasibov, Efendi N.
    Atilgan, Can
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2016, 24 (06) : 1648 - 1653
  • [33] Support vector machines with clustering for training with very large datasets
    Evgeniou, T
    Pontil, M
    METHODS AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2002, 2308 : 346 - 354
  • [34] A sampling-based approach for efficient clustering in large datasets
    Exarchakis, Georgios
    Oubari, Omar
    Lenz, Gregor
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12393 - 12402
  • [35] Orthology Detection Combining Clustering and Synteny for Very Large Datasets
    Lechner, Marcus
    Hernandez-Rosales, Maribel
    Doerr, Daniel
    Wieseke, Nicolas
    Thevenin, Annelyse
    Stoye, Jens
    Hartmann, Roland K.
    Prohaska, Sonja J.
    Stadler, Peter F.
    PLOS ONE, 2014, 9 (08):
  • [36] Dealing with Large Datasets Using an Artificial Intelligence Clustering Tool
    Moschopoulos, Charalampos N.
    Tsiatsis, Panagiotis
    Beligiannis, Grigorios N.
    Fotakis, Dimitrios
    Likothanassis, Spiridon D.
    TOOLS AND APPLICATIONS WITH ARTIFICIAL INTELLIGENCE, 2009, 166 : 105 - +
  • [37] A Clustering-Based Data Reduction for the Large Automotive Datasets
    Siwek, Patryk
    Skruch, Pawel
    Dlugosz, Marek
    2023 27TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, MMAR, 2023, : 234 - 239
  • [38] Distance Based Fast Hierarchical Clustering Method for Large Datasets
    Patra, Bidyut Kr.
    Hubballi, Neminath
    Biswas, Santosh
    Nandi, Sukumar
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2010, 6086 : 50 - 59
  • [39] An improved MapReduce Design of Kmeans for clustering very large datasets
    Boukhdhir, Amira
    Lachiheb, Oussama
    Gouider, Mohamed Salah
    2015 IEEE/ACS 12TH INTERNATIONAL CONFERENCE OF COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2015,
  • [40] Clustering Large Datasets by Merging K-Means Solutions
    Volodymyr Melnykov
    Semhar Michael
    Journal of Classification, 2020, 37 : 97 - 123