All solvable extensions of a class of nilpotent Lie algebras of dimension n and degree of nilpotency n-1

被引:19
|
作者
Snobl, L. [1 ]
Winternitz, P. [2 ,3 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CASIMIR-OPERATORS; TRIANGULAR NILRADICALS; ABELIAN NILRADICALS; MOVING COFRAMES; INVARIANTS;
D O I
10.1088/1751-8113/42/10/105201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct all solvable Lie algebras with a specific n-dimensional nilradical n(n,2) (of degree of nilpotency n - 1 and with an (n - 2)-dimensional maximal Abelian ideal). We find that for given n such a solvable algebra is unique up to isomorphisms. Using the method of moving frames we construct a basis for the Casimir invariants of the nilradical n(n,2). We also construct a basis for the generalized Casimir invariants of its solvable extension s(n+1) consisting entirely of rational functions of the chosen invariants of the nilradical.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Constructing (n+1)-Lie algebras from n-Lie algebras
    Bai, Ruipu
    Wu, Yong
    Li, Jiaqian
    Zhou, Heng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (47)
  • [42] Cohomologies, deformations and extensions of n-Hom-Lie algebras
    Song, Lina
    Tang, Rong
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 141 : 65 - 78
  • [43] On Lie-isoclinic extensions of Leibniz n-algebras
    Safa, Hesam
    Biyogmam, Guy R.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 603 - 612
  • [44] HOMOLOGY AND CENTRAL EXTENSIONS OF LEIBNIZ AND LIE n-ALGEBRAS
    Manuel Casas, Jose
    Khmaladze, Emzar
    Ladra, Manuel
    Van der Linden, Tim
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2011, 13 (01) : 59 - 74
  • [45] Extensions and Crossed Modules of n-Lie-Rinehart Algebras
    Ben Hassine, A.
    Chtioui, T.
    Elhamdadi, M.
    Mabrouk, S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (03)
  • [46] On the construction of W-N-algebras in the form of A(N-1)-Casimir algebras
    Ozer, HT
    MODERN PHYSICS LETTERS A, 1996, 11 (14) : 1139 - 1149
  • [47] N=2 structures on solvable Lie algebras: The c=9 classification
    FigueroaOFarrill, JM
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (01) : 129 - 156
  • [48] THE DIMENSION OF PRODUCTS OF n HOMOGENEOUS COMPONENTS IN FREE LIE ALGEBRAS
    Mansuroglu, Nil
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 1774 - 1779
  • [49] Graded Lie algebras of maximal class of type n
    Mattarei, Sandro
    Ugolini, Simone
    JOURNAL OF ALGEBRA, 2022, 593 : 142 - 177
  • [50] Deformations of W1 (n) ⊗ A and modular semisimple Lie algebras with a solvable maximal subalgebra
    Zusmanovich, P
    JOURNAL OF ALGEBRA, 2003, 268 (02) : 603 - 635