All solvable extensions of a class of nilpotent Lie algebras of dimension n and degree of nilpotency n-1

被引:19
|
作者
Snobl, L. [1 ]
Winternitz, P. [2 ,3 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CASIMIR-OPERATORS; TRIANGULAR NILRADICALS; ABELIAN NILRADICALS; MOVING COFRAMES; INVARIANTS;
D O I
10.1088/1751-8113/42/10/105201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct all solvable Lie algebras with a specific n-dimensional nilradical n(n,2) (of degree of nilpotency n - 1 and with an (n - 2)-dimensional maximal Abelian ideal). We find that for given n such a solvable algebra is unique up to isomorphisms. Using the method of moving frames we construct a basis for the Casimir invariants of the nilradical n(n,2). We also construct a basis for the generalized Casimir invariants of its solvable extension s(n+1) consisting entirely of rational functions of the chosen invariants of the nilradical.
引用
收藏
页数:16
相关论文
共 50 条