A synergetic description of carbon nanofiber growth

被引:7
|
作者
Merkulov, I. A. [1 ,2 ]
Klein, K. L. [2 ,3 ,4 ]
Simpson, M. L. [2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Ioffe Inst, St Petersburg 194021, Russia
[2] Oak Ridge Natl Lab, Div Mat Sci & Technol, Knoxville, TN 37831 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Knoxville, TN 37831 USA
[4] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
carbon; catalysts; chemical potential; chemical vapour deposition; nanofibres; nanotechnology; CATALYTIC GROWTH; NANOTUBES; SURFACES; MECHANISM;
D O I
10.1063/1.3093687
中图分类号
O59 [应用物理学];
学科分类号
摘要
A self-consistent mathematical model of the growth of carbon nanofiber in a catalytic chemical vapor deposition process has been developed. This model includes the balance equation for carbon transport through the catalyst and the equation for mechanical and chemical balance in the catalyst-nanofiber system. It is demonstrated that the most important parameter that governs the nanofiber growth behavior is the difference in the carbon chemical potentials in the catalyst and nanofiber. This parameter determines the carbon transport to the nanofiber. It is also responsible for the catalyst shape and topology of the interface between the catalyst and nanofiber. The solutions of the model are in qualitative agreement with numerous experimental results. The model can be used in designing experiments and explaining existing results. It leaves the opportunity for more a precise and complex mathematical calculation of different aspects of the growth process.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [41] A thin carbon nanofiber/branched carbon nanofiber nanocomposite for high-performance supercapacitors
    Zhou, Yongsheng
    Xu, Shibiao
    Yang, Jiaojiao
    Zhou, Ziyu
    Peng, Shou
    Wang, Xuchun
    Yao, Tingting
    Zhu, Yingchun
    Xu, Bingshe
    Zhang, Xueji
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (07) : 3091 - 3094
  • [42] Fabrication of monolithic carbon nanofiber/carbon composites
    Ge, Xiang
    Chen, Mingqi
    Wang, Jitong
    Long, Donghui
    Ling, Licheng
    Qiao, Wenming
    Mochida, Isao
    Yoon, Seong-Ho
    RSC ADVANCES, 2016, 6 (08): : 6443 - 6450
  • [43] Carbon nanofiber reinforced carbon/polymer composite
    Joshi, M
    Bhattacharyya, A
    NSTI NANOTECH 2004, VOL 3, TECHNICAL PROCEEDINGS, 2004, : 308 - 311
  • [44] Carbon Nanofiber Switches and Sensors
    Kaul, Anupama B.
    2012 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (FCS), 2012,
  • [45] Polycarbonate carbon nanofiber composites
    Brittain, W.J. (wjbritt@uakron.edu), 1600, Elsevier Ltd (41):
  • [46] Zirconia/carbon nanofiber composite
    Duszova, Annamaria
    Dusza, Jan
    Tomasek, Karel
    Morgiel, Jerzy
    Blugan, Gurdial
    Kuebler, Jakob
    SCRIPTA MATERIALIA, 2008, 58 (06) : 520 - 523
  • [47] Voltammetry at carbon nanofiber electrodes
    Marken, F
    Gerrard, ML
    Mellor, IM
    Mortimer, RJ
    Madden, CE
    Fletcher, S
    Holt, K
    Foord, JS
    Dahm, RH
    Page, F
    ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (04) : 177 - 180
  • [48] Polycarbonate carbon nanofiber composites
    Higgins, BA
    Brittain, WJ
    EUROPEAN POLYMER JOURNAL, 2005, 41 (05) : 889 - 893
  • [49] Carbon nanofiber growth from methane over carbon-supported NiCu catalysts: Two temperature regimes
    Schoemaker, Suzan E.
    Welling, Tom A. J.
    Wezendonk, Dennie F. L.
    Reesink, Bennie H.
    van Bavel, Alexander P.
    Jongh, Petra E. de
    CATALYSIS TODAY, 2023, 418
  • [50] Varieties of carbon nanofiber paper
    Inorganic Specialists Inc., Miamisburg, OH
    SAMPE J, 2007, 4 (58-61):