A synergetic description of carbon nanofiber growth

被引:7
|
作者
Merkulov, I. A. [1 ,2 ]
Klein, K. L. [2 ,3 ,4 ]
Simpson, M. L. [2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Ioffe Inst, St Petersburg 194021, Russia
[2] Oak Ridge Natl Lab, Div Mat Sci & Technol, Knoxville, TN 37831 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Knoxville, TN 37831 USA
[4] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
carbon; catalysts; chemical potential; chemical vapour deposition; nanofibres; nanotechnology; CATALYTIC GROWTH; NANOTUBES; SURFACES; MECHANISM;
D O I
10.1063/1.3093687
中图分类号
O59 [应用物理学];
学科分类号
摘要
A self-consistent mathematical model of the growth of carbon nanofiber in a catalytic chemical vapor deposition process has been developed. This model includes the balance equation for carbon transport through the catalyst and the equation for mechanical and chemical balance in the catalyst-nanofiber system. It is demonstrated that the most important parameter that governs the nanofiber growth behavior is the difference in the carbon chemical potentials in the catalyst and nanofiber. This parameter determines the carbon transport to the nanofiber. It is also responsible for the catalyst shape and topology of the interface between the catalyst and nanofiber. The solutions of the model are in qualitative agreement with numerous experimental results. The model can be used in designing experiments and explaining existing results. It leaves the opportunity for more a precise and complex mathematical calculation of different aspects of the growth process.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Synergetic carbon nanotube growth
    Parker, Jason M.
    Wong, H. -S. Philip
    CARBON, 2013, 62 : 61 - 68
  • [2] Synergetic effect of carbon dot at cellulose nanofiber for sustainable metal-free photocatalyst
    Ahn, Jungbin
    Pak, Sewon
    Kim, Hyungsup
    CELLULOSE, 2021, 28 (18) : 11261 - 11274
  • [3] Synergetic effect of carbon dot at cellulose nanofiber for sustainable metal-free photocatalyst
    Jungbin Ahn
    Sewon Pak
    Hyungsup Kim
    Cellulose, 2021, 28 : 11261 - 11274
  • [4] Carbon nanofiber growth on thin rhodium layers
    Chinthaginjala, J. K.
    Unnikrishnan, S.
    Smithers, M. A.
    Kip, G. A. M.
    Lefferts, L.
    CARBON, 2012, 50 (03) : 1434 - 1437
  • [5] Carbon nanofiber growth via dehalogenation of tetrachloroethylene
    Morgan, Ashley C.
    Fahlman, Bradley D.
    Mohanty, Dillip K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [6] Surface control of activated carbon fiber by growth of carbon nanofiber\
    Lim, S
    Yoon, SH
    Shimizu, Y
    Jung, H
    Mochida, I
    LANGMUIR, 2004, 20 (13) : 5559 - 5563
  • [7] The significance of plasma heating in carbon nanotube and nanofiber growth
    Teo, KBK
    Hash, DB
    Lacerda, RG
    Rupesinghe, NL
    Bell, MS
    Dalal, SH
    Bose, D
    Govindan, TR
    Cruden, BA
    Chhowalla, M
    Amaratunga, GAJ
    Meyyappan, JM
    Milne, WI
    NANO LETTERS, 2004, 4 (05) : 921 - 926
  • [8] Room-temperature growth of a carbon nanofiber on the tip of conical carbon protrusions
    Tanemura, M
    Okita, T
    Yamauchi, H
    Tanemura, S
    Morishima, R
    APPLIED PHYSICS LETTERS, 2004, 84 (19) : 3831 - 3833
  • [9] Carbon nanofiber growth on carbon paper for proton exchange membrane fuel cells
    Celebi, Serdar
    Nijhuis, T. Alexander
    van der Schaaf, John
    de Bruijn, Frank A.
    Schouten, Jaap C.
    CARBON, 2011, 49 (02) : 501 - 507
  • [10] A Synergetic Approach to the Description of Advanced Turbulence
    A.V. Kolesnichenko
    Solar System Research, 2002, 36 : 107 - 124