Geometrical classification of Killing tensors on bidimensional flat manifolds

被引:24
|
作者
Chanu, C.
Degiovanni, L. [1 ]
McLenaghan, R. G.
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
关键词
D O I
10.1063/1.2217649
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Valence two Killing tensors in the Euclidean and Minkowski planes are classified under the action of the group which preserves the type of the corresponding Killing web. The classification is based on an analysis of the system of determining partial differential equations for the group invariants and is entirely algebraic. The approach allows one to classify both characteristic and noncharacteristic Killing tensors. (c) 2006 American Institute of Physics.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Killing tensors and symmetries
    Garfinkle, David
    Glass, E. N.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (09)
  • [22] Generalized Killing tensors
    Collinson, CD
    Howarth, L
    GENERAL RELATIVITY AND GRAVITATION, 2000, 32 (09) : 1767 - 1776
  • [23] Killing tensors on tori
    Heil, Konstantin
    Moroianu, Andrei
    Semmelmann, Uwe
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 117 : 1 - 6
  • [24] HOMOTHETIC KILLING TENSORS
    PRINCE, G
    PHYSICS LETTERS A, 1983, 97 (04) : 133 - 136
  • [25] Generalized Killing Tensors
    C. D. Collinson
    L. Howarth
    General Relativity and Gravitation, 2000, 32 : 1767 - 1776
  • [26] SPACETIMES WITH KILLING TENSORS
    HUGHSTON, LP
    SOMMERS, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 32 (02) : 147 - 152
  • [27] Killing-Yano tensors and Nambu tensors
    Baleanu, D
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (09): : 1065 - 1072
  • [28] Irreducible killing tensors from third rank Killing-Yano tensors
    Popa, Florian Catalin
    Tintareanu-Mircea, Ovidiu
    MODERN PHYSICS LETTERS A, 2007, 22 (18) : 1309 - 1317
  • [29] A classification of the torsion tensors on almost contact manifolds with B-metric
    Manev, Mancho
    Ivanova, Miroslava
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (10): : 1416 - 1432
  • [30] Lax tensors, killing tensors and geometric duality
    Baleanu, D
    Karasu, A
    MODERN PHYSICS LETTERS A, 1999, 14 (37) : 2587 - 2594