The existence of positive solutions for some nonlinear equation systems

被引:9
|
作者
Liu, Baofang
Zhang, Jihui [1 ]
机构
[1] Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Jiangsu, Peoples R China
[2] N Univ China, Dept Appl Math, Taiyuan 030051, Shanxi, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
boundary value problems; equation systems; positive solution; cone;
D O I
10.1016/j.jmaa.2005.12.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the existence of positive solutions of the following boundary value problem: (psi(1)(x'))' + a(t)f(x,y) = 0, (psi(2)(y'))' + b(t)g(x,y) = 0, t is an element of (0,1), { alpha psi(1)(x(0)) - beta psi(1)(x'(0)) = 0, alpha psi(2)(y(0)) - beta psi(2)(y'(0)) = 0, gamma psi(1)(x(1)) + mu psi(1)(x'(1)) = 0, gamma alpha(2)(y(1)) + mu psi(2)(y'(1)) = 0, where psi 1, psi 2: R -> R are the increasing homeomorphism and positive homomorphism and psi 1(0) = 0, psi 2(0) = 0. We show the sufficient conditions for the existence of positive solutions by using the nome type cone expansion-expression fixed point theorem. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:970 / 981
页数:12
相关论文
共 50 条