Generalized Adaptive Smoothing Using Matrix Completion for Traffic State Estimation

被引:4
|
作者
Yang, Chuhan [1 ,2 ]
Thodi, Bilal Thonnam [1 ,2 ]
Jabari, Saif Eddin [1 ,2 ]
机构
[1] New York Univ Abu Dhabi, Div Engn, Abu Dhabi 129188, U Arab Emirates
[2] NYU, Tandon Sch Engn, New York, NY 10003 USA
关键词
INTERSECTION CONTROL; STOCHASTIC-MODEL;
D O I
10.1109/ITSC55140.2022.9921908
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Adaptive Smoothing Method (ASM) is a data-driven approach for traffic state estimation. It interpolates unobserved traffic quantities by smoothing measurements along spatio-temporal directions defined by characteristic traffic wave speeds. The standard ASM consists of a superposition of two a priori estimates weighted by a heuristic weight factor. In this paper, we propose a systematic procedure to calculate the optimal weight factors. We formulate the a priori weights calculation as a constrained matrix completion problem, and efficiently solve it using the Alternating Direction Method of Multipliers (ADMM) algorithm. Our framework allows one to further improve the conventional ASM, which is limited by utilizing only one pair of congested and free flow wave speeds, by considering multiple wave speeds. Our proposed algorithm does not require any field-dependent traffic parameters, thus bypassing frequent field calibrations as required by the conventional ASM. Experiments using NGSIM highway data show that the proposed ADMM-based estimation incurs lower error than the ASM estimation.
引用
收藏
页码:787 / 792
页数:6
相关论文
共 50 条
  • [31] PREMIUM ADJUSTMENT BY GENERALIZED ADAPTIVE EXPONENTIAL SMOOTHING
    HERKENRATH, U
    INSURANCE MATHEMATICS & ECONOMICS, 1994, 15 (2-3): : 203 - 217
  • [32] Large-scale Traffic Data Imputation Using Matrix Completion on Graphs
    Han, Tianyang
    Wada, Kentaro
    Oguchi, Takashi
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2252 - 2258
  • [33] Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data
    Ran, Bin
    Song, Li
    Zhang, Jian
    Cheng, Yang
    Tan, Huachun
    PLOS ONE, 2016, 11 (07):
  • [34] Precision matrix estimation using penalized Generalized Sylvester matrix equation
    Avagyan, Vahe
    TEST, 2022, 31 (04) : 950 - 967
  • [35] Precision matrix estimation using penalized Generalized Sylvester matrix equation
    Vahe Avagyan
    TEST, 2022, 31 : 950 - 967
  • [36] Estimation and optimization of load balancing using adaptive traffic engineering MATE in generalized multiprotocol label switching (GMPLS)
    Estimación y optimización del balanceo de carga usando ingeniería de tráfico adaptativa mate en redes de conmutación de etiquetas multiprotocolo generalizado
    López, D.A. (dalopezs@udistrital.edu.co), 1600, Centro de Informacion Tecnologica (25):
  • [37] Generalized Matrix Completion and Algebraic Natural Proofs
    Blaeser, Markus
    Ikenmeyer, Christian
    Jindal, Gorav
    Lysikov, Vladimir
    STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 1193 - 1206
  • [38] Bayesian State Estimation Using Generalized Coordinates
    Balaji, Bhashyam
    Friston, Karl
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XX, 2011, 8050
  • [39] Matrix Completion ESPRIT for DOA Estimation Using Nonuniform Linear Array
    Li, Hongbing
    Zhang, Qunfei
    Feng, Weike
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2019, E102B (12) : 2253 - 2259
  • [40] Fundamental matrix estimation using generalized least squares
    Zhou, HY
    Green, PR
    Wallace, AA
    Xu, SD
    PROCEEDINGS OF THE FOURTH IASTED INTERNATIONAL CONFERENCE ON VISUALIZATION, IMAGING, AND IMAGE PROCESSING, 2004, : 263 - 268