Thermal conductivity decomposition in two-dimensional materials: Application to graphene

被引:78
|
作者
Fan, Zheyong [1 ]
Pereira, Luiz Felipe C. [2 ]
Hirvonen, Petri [1 ]
Ervasti, Mikko M. [1 ]
Elder, Ken R. [3 ]
Donadio, Davide [4 ]
Ala-Nissila, Tapio [1 ,5 ,6 ,7 ]
Harju, Ari [1 ]
机构
[1] Aalto Univ, Dept Appl Phys, COMP Ctr Excellence, FI-00076 Espoo, Finland
[2] Univ Fed Rio Grande do Norte, Dept Fis, BR-59078900 Natal, RN, Brazil
[3] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[4] Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA
[5] Brown Univ, Dept Phys, Box 1843, Providence, RI 02912 USA
[6] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[7] Loughborough Univ, Dept Phys, Loughborough LE11 3TU, Leics, England
基金
芬兰科学院; 美国国家科学基金会; 中国国家自然科学基金;
关键词
MOLECULAR-DYNAMICS; IRREVERSIBLE-PROCESSES; PHONON TRANSPORT;
D O I
10.1103/PhysRevB.95.144309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two-dimensional materials have unusual phonon spectra due to the presence of flexural (out-of-plane) modes. Although molecular dynamics simulations have been extensively used to study heat transport in such materials, conventional formalisms treat the phonon dynamics isotropically. Here, we decompose the microscopic heat current in atomistic simulations into in-plane and out-of-plane components, corresponding to in-plane and out-of- plane phonon dynamics, respectively. This decomposition allows for direct computation of the corresponding thermal conductivity components in two-dimensional materials. We apply this decomposition to study heat transport in suspended graphene, using both equilibrium and nonequilibrium molecular dynamics simulations. We show that the flexural component is responsible for about two-thirds of the total thermal conductivity in unstrained graphene, and the acoustic flexural component is responsible for the logarithmic divergence of the conductivity when a sufficiently large tensile strain is applied.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Tunable thermal conductivity of π-conjugated two-dimensional polymers
    Ma, Hao
    O'Donnel, Erica
    Tian, Zhiting
    NANOSCALE, 2018, 10 (29) : 13924 - 13929
  • [42] Viscosity and thermal conductivity of simple two-dimensional gas
    Vigdorovich, MV
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2003, 77 (01): : 110 - 114
  • [43] Thermal waves in two-dimensional heterogeneous materials
    Marciak-Kozlowska, J
    Kozlowski, M
    Mucha, Z
    LASERS IN ENGINEERING, 2001, 11 (03) : 189 - 194
  • [44] Two-Dimensional Materials for Thermal Management Applications
    Song, Houfu
    Liu, Jiaman
    Liu, Bilu
    Wu, Junqiao
    Cheng, Hui-Ming
    Kang, Feiyu
    JOULE, 2018, 2 (03) : 442 - 463
  • [45] Colloquium: Spintronics in graphene and other two-dimensional materials
    Avsar, A.
    Ochoa, H.
    Guinea, F.
    Ozyilmaz, B.
    Van Wees, B. J.
    Vera-Marun, I. J.
    REVIEWS OF MODERN PHYSICS, 2020, 92 (02)
  • [46] Graphene and beyond: Two-dimensional materials for transistor applications
    Schwierz, F.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS VII, 2015, 9467
  • [47] Emergent elemental two-dimensional materials beyond graphene
    Zhang, Yuanbo
    Rubio, Angel
    Le Lay, Guy
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (05)
  • [48] Limits to the Optical Response of Graphene and Two-Dimensional Materials
    Miller, Owen D.
    Ilic, Ognjen
    Christensen, Thomas
    Reid, M. T. Homer
    Atwater, Harry A.
    Joannopoulos, John D.
    Soljacic, Mann
    Johnson, Steven G.
    NANO LETTERS, 2017, 17 (09) : 5408 - 5415
  • [49] Graphene and Two-Dimensional Layered Materials for Device Applications
    Kaul, Anupama B.
    2013 13TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2013, : 1 - 4
  • [50] Photonics and optoelectronics of two-dimensional materials beyond graphene
    Ponraj, Joice Sophia
    Xu, Zai-Quan
    Dhanabalan, Sathish Chander
    Mu, Haoran
    Wang, Yusheng
    Yuan, Jian
    Li, Pengfei
    Thakur, Siddharatha
    Ashrafi, Mursal
    Mccoubrey, Kenneth
    Zhang, Yupeng
    Li, Shaojuan
    Zhang, Han
    Bao, Qiaoliang
    NANOTECHNOLOGY, 2016, 27 (46)