L-p-L-q boundedness for convolution operators defined by singular measures in R-n

被引:0
|
作者
Ricci, F [1 ]
机构
[1] POLITECN TORINO, DIPARTIMENTO MATEMAT, I-10129 TURIN, ITALY
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:237 / 252
页数:16
相关论文
共 50 条
  • [41] L2(Rn) boundedness for a class of multilinear singular integral operators
    Hu, GE
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2003, 19 (02) : 397 - 404
  • [42] L(2)-BOUNDEDNESS OF SOME SINGULAR INTEGRAL-OPERATORS ON PRODUCT DOMAINS
    LONG, RL
    ZHU, XX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1993, 36 (05): : 538 - 549
  • [43] L2(Rn) boundedness for the commutators of homogeneous singular integral operators
    Hu, GE
    Ma, BL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (05) : 785 - 792
  • [44] L p -boundedness properties of variation operators in the Schrodinger setting
    Betancor, J. J.
    Farina, J. C.
    Harboure, E.
    Rodriguez-Mesa, L.
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02): : 485 - 534
  • [45] ANALOG OF AN INEQUALITY OF BOHR FOR INTEGRALS OF FUNCTIONS FROM L-p(R-n). II
    Ivanov, B. F.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2014, 3 (02): : 32 - 51
  • [46] ANALOG OF AN INEQUALITY OF BOHR FOR INTEGRALS OF FUNCTIONS FROM L-p(R-n). I
    Ivanov, B. F.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2014, 3 (01): : 16 - 34
  • [47] The L p -L q compactness of commutators of oscillatory singular integrals
    Sun, Wenchang
    Wang, Shifen
    FORUM MATHEMATICUM, 2024,
  • [48] Strictly singular operators in pairs of L p space
    Semenov, E. M.
    Tradacete, P.
    Hernandez, F. L.
    DOKLADY MATHEMATICS, 2016, 94 (01) : 450 - 452
  • [49] SPECTRUM OF SINGULAR INTERVALS OF OPERATORS IN L(P)-SPACES
    GOKHBERG, IT
    KRUPINIK, NY
    STUDIA MATHEMATICA, 1968, 31 (04) : 347 - &
  • [50] Boundedness of operators of Hardy type in Lambda(p,q) spaces and weighted mixed inequalities for singular integral operators
    MartinReyes, FJ
    Salvador, PO
    Gavilan, MDS
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 : 157 - 170