Control of a decelerating boundary layer. Part 3: Optimization of round jets vortex generators

被引:56
|
作者
Godard, G.
Stanislas, M. [1 ]
机构
[1] Lab Mecan Lille, Lille, France
[2] Bv Paul Langevin, F-59655 Villeneuve Dascq, France
关键词
flow control; APG boundary layer; vortex generators; jets;
D O I
10.1016/j.ast.2005.11.005
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In the previous two parts of this study [G. Godard, M. Stanislas, Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators, Aerospace Sci. Technol. 10 (3) (2006) 181-191; G. Godard, J.M. Foucaut, M. Stanislas, Control of a decelerating boundary layer. Part 2: Optimization of slotted jets vortex generators, Aerospace Sci. Technol. 10 (5) (2006) 394-100], two different types of vortex generators were characterized and optimized in an adverse pressure gradient boundary layer. The model used was a bump in a boundary layer wind tunnel, which mimics the adverse pressure gradient on the suction side of an airfoil at the verge of separation. The present contribution describes the results of a test campaign performed in the same facility to optimize round jets devices with continuous blowing. The optimization was done as previously with hot film shear stress probes. The results show that the optimized jet devices give performances comparable to standard passive vortex generators in terms of skin friction. They also allow a quantitative comparison between three different types of vortex generators: passive devices, slotted and round jets. This comparison is performed in both co- and counter-rotating configurations. (C) 2006 Elsevier SAS. All rights reserved.
引用
收藏
页码:455 / 464
页数:10
相关论文
共 50 条
  • [31] OPTIMAL CONTROL OF FRICTION IN LAMINAR INCOMPRESSIBLE FLUID BOUNDARY LAYER.
    Garaev, K.G.
    Soviet Aeronautics (English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika), 1981, 24 (02): : 23 - 26
  • [32] Stability analysis of a streaky boundary layer generated by miniature vortex generators
    Szabo, Andras
    Nagy, Peter Tamas
    De Baets, Gilles
    Vanierschot, Maarten
    Paal, Gyoergy
    COMPUTERS & FLUIDS, 2024, 269
  • [33] Passive control of boundary layer flow separation on a wind turbine airfoil using vortex generators and slot
    Nia, Bahador Bakhtiari
    Ja'fari, Mohammad
    Ranjbar, Adel Rezaei
    Jaworski, Artur J.
    OCEAN ENGINEERING, 2023, 283
  • [34] Micro-vortex generators for shock wave/boundary layer interactions
    Panaras, Argyris G.
    Lu, Frank K.
    PROGRESS IN AEROSPACE SCIENCES, 2015, 74 : 16 - 47
  • [35] An integral boundary layer engineering model for vortex generators implemented in XFOIL
    De Tavernier, Delphine
    Baldacchino, Daniel
    Ferreira, Carlos
    WIND ENERGY, 2018, 21 (10) : 906 - 921
  • [36] Computational Modelling of Rectangular Sub-Boundary Layer Vortex Generators
    Fernandez-Gamiz, Unai
    Errasti, Inigo
    Gutierrez-Amo, Ruben
    Boyano, Ana
    Barambones, Oscar
    APPLIED SCIENCES-BASEL, 2018, 8 (01):
  • [37] STUDY OF ELECTROSTATIC COOLING (PART 2). DEVELOPMENT OF FLOW VELOCITY IN BOUNDARY LAYER.
    Kumeoka, Yukio
    Jido, Morio
    Kikai Gijutsu Kenkyusho Shoho/Journal of Mechanical Engineering Laboratory, 1984, 38 (01): : 26 - 33
  • [38] 3-DIMENSIONAL BOUNDARY LAYER FOR DECELERATING FLOWS WITH OR WITHOUT SUCTION
    BHATNAGA.PL
    AHUJA, GC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1964, 44 (12): : 529 - &
  • [39] Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux
    Drennan, William M.
    Zhang, Jun A.
    French, Jeffrey R.
    McCormick, Cyril
    Black, Peter G.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2007, 64 (04) : 1103 - 1115
  • [40] Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets
    Dennis, David J. C.
    Nickels, Timothy B.
    JOURNAL OF FLUID MECHANICS, 2011, 673 : 180 - 217