Fixed points of meromorphic functions and of their differences and shifts

被引:6
|
作者
Chen, Zong-Xuan [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
meromorphic function; complex difference; shift; fixed point; ZEROS;
D O I
10.4064/ap109-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(z) be a finite order transcendental meromorphic function such that lambda(1/f(z)) < sigma(f(z)), and let c is an element of C \ {0} be a constant such that f(z + c) not equivalent to f(z) + c. We mainly prove that max{tau(f(z)), tau(Delta(c)f(z))} = max{tau(f(z)), tau(f(z + c))} = max{tau(Delta(c)f(z)), tau(f(z + c))} = sigma(f(z)), where tau(g(z)) denotes the exponent of convergence of fixed points of the meromorphic function g(z), and sigma(g(z)) denotes the order of growth of g(z).
引用
收藏
页码:153 / 163
页数:11
相关论文
共 50 条