Generalized holomorphic analytic torsion

被引:6
|
作者
Burgos Gil, Jose Ignacio [1 ]
Freixas i Montplet, Gerard [2 ]
Litcanu, Razvan [3 ]
机构
[1] CSIC UAM UCM UC3, Inst Ciencias Matemat, Madrid 28049, Spain
[2] CNRS, IMJ, Paris, France
[3] Alexandru Ioan Cuza Univ, Fac Math, Iasi, Romania
关键词
Grothendieck-Riemann-Roch theorem; holomorphic analytic torsion; Quillen metric; Grothendieck duality; RIEMANN-ROCH THEOREM; ALGEBRAIC VECTOR-BUNDLES; DETERMINANT BUNDLES; QUILLEN METRICS; ELLIPTIC FAMILIES; DIRAC OPERATORS; DIRECT IMAGES; CHERN FORMS; INVARIANTS;
D O I
10.4171/JEMS/438
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we extend the holomorphic analytic torsion classes of Bismut and Kohler to arbitrary projective morphisms between smooth algebraic complex varieties. To this end, we propose an axiomatic definition and give a classification of the theories of generalized holomorphic analytic torsion classes for projective morphisms. The extension of the holomorphic analytic torsion classes of Bismut and Kohler is obtained as the theory of generalized analytic torsion classes associated to -R/2, R being the R-genus. As an application of the axiomatic characterization, we give new simpler proofs of known properties of holomorpic analytic torsion classes, we give a characterization of the R-genus, and we construct a direct image of hermitian structures for projective morphisms.
引用
收藏
页码:463 / 535
页数:73
相关论文
共 50 条
  • [21] REIDEMEISTER TORSION AND ANALYTIC TORSION OF SPHERES
    de Melo, Thiago
    Spreafico, Mauro
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2009, 4 (01) : 181 - 185
  • [22] Holomorphic equivariant analytic torsions
    Bismut, JM
    Goette, S
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (06) : 1289 - 1422
  • [23] A holomorphic realization of analytic cohomology
    Eastwood, MG
    Gindikin, SG
    Wong, HW
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (06): : 529 - 534
  • [24] ANALYTIC CAPACITY AND HOLOMORPHIC MOTIONS
    Pouliasis, Stamatis
    Ransford, Thomas
    Younsi, Malik
    CONFORMAL GEOMETRY AND DYNAMICS, 2019, 23 : 130 - 134
  • [25] Analytic continuation of holomorphic mappings
    Ayed, Besma
    Ourimi, Nabil
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (17-18) : 1011 - 1016
  • [26] Holomorphic equivariant analytic torsions
    J.-M. Bismut
    S. Goette
    Geometric & Functional Analysis GAFA, 2000, 10 : 1289 - 1422
  • [27] The asymptotics for Cappell–Miller holomorphic torsion
    Guangxiang Su
    manuscripta mathematica, 2017, 154 : 411 - 428
  • [28] HOLOMORPHIC TORSION ON HERMITIAN SYMMETRICAL SPACES
    KOHLER, K
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (03): : 247 - 252
  • [29] Holomorphic immersions and equivariant torsion forms
    Bismut, JM
    Ma, XN
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 575 : 189 - 235
  • [30] HOLOMORPHIC TORSION ON HERMITIAN SYMMETRICAL SPACES
    KOHLER, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 460 : 93 - 116