LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN A PERIODIC DOMAIN

被引:5
|
作者
Li, Fucai [1 ]
Mu, Yanmin [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Jiangsu, Peoples R China
关键词
Isentropic compressible magnetohydrodynamic equations; incompressible magnetohydrodynamic equations; periodic domain; low Mach number limit; NAVIER-STOKES EQUATIONS; CRITICAL SPACES; GLOBAL EXISTENCE; BOUNDED DOMAIN; WELL-POSEDNESS; CONVERGENCE; SYSTEM; FLOWS;
D O I
10.3934/dcds.2018069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the convergence of the compressible isentropic magnetohydrodynamic equations to the corresponding incompressible magnetohydrodynamic equations with ill-prepared initial data in a periodic domain. We prove that the solution to the compressible isentropic magnetohydrodynamic equations with small Mach number exists uniformly in the time interval as long as that to the incompressible one does. Furthermore, we obtain the convergence result for the solutions filtered by the group of acoustics.
引用
收藏
页码:1669 / 1705
页数:37
相关论文
共 50 条
  • [21] Periodic solutions to the compressible magnetohydrodynamic equations in a periodic domain
    Cai, Hong
    Tan, Zhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (01) : 172 - 193
  • [22] Low Mach number limit of the compressible Euler–Cattaneo–Maxwell equations
    Fucai Li
    Shuxing Zhang
    Zhipeng Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [23] The low Mach number limit in Besov spaces for compressible magnetohydrodynamics equations
    Wang, Peng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (03) : 580 - 588
  • [24] Low Mach limit to one-dimensional nonisentropic planar compressible magnetohydrodynamic equations
    Liu, Xin
    Wang, Lijuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 580 - 599
  • [25] Low Mach limit to one-dimensional nonisentropic planar compressible magnetohydrodynamic equations
    Liu, Xin
    Wang, Lijuan
    Mathematical Methods in the Applied Sciences, 2020, 43 (02): : 580 - 599
  • [26] Low Mach Number Limit of the Non-isentropic Ideal Magnetohydrodynamic Equations
    Li, Fucai
    Zhang, Shuxing
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (03)
  • [27] Low Mach Number Limit of the Non-isentropic Ideal Magnetohydrodynamic Equations
    Fucai Li
    Shuxing Zhang
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [28] Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations
    Jiang, Song
    Ju, Qiangchang
    Li, Fucai
    NONLINEARITY, 2012, 25 (05) : 1351 - 1365
  • [29] Low Mach number limit of the compressible Euler-Cattaneo-Maxwell equations
    Li, Fucai
    Zhang, Shuxing
    Zhang, Zhipeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [30] STABILITY WITH RESPECT TO DOMAIN OF THE LOW MACH NUMBER LIMIT OF COMPRESSIBLE VISCOUS FLUIDS
    Feireisl, Eduard
    Karper, Trygve
    Kreml, Ondrej
    Stebel, Jan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (13): : 2465 - 2493