LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN A PERIODIC DOMAIN

被引:5
|
作者
Li, Fucai [1 ]
Mu, Yanmin [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Jiangsu, Peoples R China
关键词
Isentropic compressible magnetohydrodynamic equations; incompressible magnetohydrodynamic equations; periodic domain; low Mach number limit; NAVIER-STOKES EQUATIONS; CRITICAL SPACES; GLOBAL EXISTENCE; BOUNDED DOMAIN; WELL-POSEDNESS; CONVERGENCE; SYSTEM; FLOWS;
D O I
10.3934/dcds.2018069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the convergence of the compressible isentropic magnetohydrodynamic equations to the corresponding incompressible magnetohydrodynamic equations with ill-prepared initial data in a periodic domain. We prove that the solution to the compressible isentropic magnetohydrodynamic equations with small Mach number exists uniformly in the time interval as long as that to the incompressible one does. Furthermore, we obtain the convergence result for the solutions filtered by the group of acoustics.
引用
收藏
页码:1669 / 1705
页数:37
相关论文
共 50 条