A new high-Li+-conductivity Mg-doped Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with enhanced electrochemical performance for solid-state lithium metal batteries

被引:38
|
作者
Nikodimos, Yosef [1 ,3 ]
Abrha, Ljalem Hadush [1 ]
Weldeyohannes, Haile Hisho [1 ]
Shitaw, Kassie Nigus [1 ]
Temesgen, Nigusu Tiruneh [1 ]
Olbasa, Bizualem Wakuma [1 ]
Huang, Chen-Jui [1 ]
Jiang, Shi-Kai [1 ]
Wang, Chia-Hsin [5 ]
Sheu, Hwo-Shuenn [5 ]
Wu, She-Huang [2 ,6 ]
Su, Wei-Nien [2 ,6 ]
Yang, Chun-Chen [3 ,4 ]
Hwang, Bing Joe [1 ,5 ,6 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Nanoelectrochem Lab, Taipei 106, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, Nanoelectrochem Lab, Taipei 106, Taiwan
[3] Ming Chi Univ Technol, Battery Res Ctr Green Energy, New Taipei 24301, Taiwan
[4] Ming Chi Univ Technol, Dept Chem Engn, New Taipei 24301, Taiwan
[5] Natl Synchrotron Radiat Res Ctr NSRRC, Hsinchu 30076, Taiwan
[6] Natl Taiwan Univ Sci & Technol, Sustainable Energy Dev Ctr, Taipei 106, Taiwan
关键词
IONIC-CONDUCTIVITY; GRAIN-BOUNDARY; GLASS-CERAMICS; GARNET ELECTROLYTE; LIGE2(PO4)(3); DENSIFICATION; TEMPERATURE; ALUMINUM; AL; PHASE;
D O I
10.1039/d0ta07807g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li1.5Al0.5Ge1.5(PO4)(3) (LAGP) is a promising solid electrolyte for use in next-generation lithium batteries. Nevertheless, its lower bulk and grain-boundary ionic conductivities are major restrictions preventing its practical utilization. Mg was introduced into LAGP to form Li1.6Al0.4Mg0.1Ge1.5(PO4)(3) (LAMGP) based on computational analysis. The doping of LAGP with Mg results in advantages such as increasing the Li+ concentration and expanding the material dimensions due to the larger ionic radius of Mg, leading to enhanced ionic conductivity. Mg had a two-birds-with-one-stone effect in the LAMGP electrolyte, not only generating super high bulk ionic conductivity of 7.435 mS cm(-1), compared to 2.896 mS cm(-1) in LAGP, but also generating low grain-boundary resistance due to improved densification. The lowering of the grain-boundary resistance and the increased densification are related to choosing the right precursor for the dopant. Using LAMGP as a hybrid solid electrolyte, a solid battery delivered great electrochemical performance in comparison to when LAGP was used. Interfacial analysis was also conducted, which revealed that the formation of an interface prevented the reduction of components in LAMGP by Li metal, therefore ensuring the long-term durability of LAMGP in liquid electrolyte. These results suggest that LAMGP is an auspicious solid electrolyte for achieving practical solid-state lithium batteries.
引用
收藏
页码:26055 / 26065
页数:11
相关论文
共 50 条
  • [1] Synthesis and conductivity studies of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Kunshina, G. B.
    Bocharova, I. V.
    Lokshin, E. P.
    INORGANIC MATERIALS, 2016, 52 (03) : 279 - 284
  • [2] Preparation of the Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with high ionic conductivity
    Kunshina G.B.
    Bocharova I.V.
    Ivanenko V.I.
    Inorganic Materials: Applied Research, 2017, 8 (02) : 238 - 244
  • [3] Synthesis and conductivity studies of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    G. B. Kunshina
    I. V. Bocharova
    E. P. Lokshin
    Inorganic Materials, 2016, 52 : 279 - 284
  • [4] Degradation of a Li1.5Al0.5Ge1.5(PO4)3-Based Solid-State Li-Metal Battery: Corrosion of Li1.5Al0.5Ge1.5(PO4)3 against the Li-Metal Anode
    Tong, Zizheng
    Lai, Yan-Ming
    Liu, Chia-Erh
    Liao, Shih-Chieh
    Chen, Jin-Ming
    Hu, Shu-Fen
    Liu, Ru-Shi
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09) : 11694 - 11704
  • [5] Smart construction of multifunctional Li1.5Al0.5Ge1.5(PO4)3|Li intermediate interfaces for solid-state batteries
    Yu, Jiahao
    Liu, Qi
    Hu, Xia
    Wang, Shuwei
    Wu, Junru
    Liang, Bin
    Han, Cuiping
    Kang, Feiyu
    Li, Baohua
    ENERGY STORAGE MATERIALS, 2022, 46 : 68 - 75
  • [6] Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Berbano, Seth S.
    Guo, Jing
    Guo, Hanzheng
    Lanagan, Michael T.
    Randall, Clive A.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (05) : 2123 - 2135
  • [7] Coordination Li diffusion chemistry in NASICON Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Yang, Yang
    Chen, Weixin
    Lu, Xia
    SOLID STATE IONICS, 2022, 381
  • [8] Li+ Conduction in a Polymer/Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li-Metal/Electrolyte Interface
    Li, Qinghui
    Wang, Xiaofen
    Wang, Linlin
    Zhu, Shyuan
    Zhong, Qingdong
    Li, Yuanyuan
    Zhou, Qiongyu
    MOLECULES, 2023, 28 (24):
  • [9] Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell
    Chung, Habin
    Kang, Byoungwoo
    CHEMISTRY OF MATERIALS, 2017, 29 (20) : 8611 - 8619
  • [10] Characterization of Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte with an Added Sintering Aid
    Hyun-Joon Lee
    Won-Jong Liyu-Liu
    Seoung-Ki Jeong
    Bong-Ki Lee
    Electronic Materials Letters, 2023, 19 : 55 - 65