Processing of single wall carbon nanotubes and implications for filling experiments

被引:0
|
作者
Chikkannanavar, SB [1 ]
Smith, BW [1 ]
Russo, RM [1 ]
Stercel, F [1 ]
Luzzi, DE [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, Lab Res Struct Matter, Philadelphia, PA 19104 USA
关键词
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single wall carbon nanotubes (SWNTs) have been processed in different schemes to get clean material for use in various filling experiments. The SWNTs synthesized by different methods require different processing schemes, and this is presumably due to heterogeneous nature of the various contaminants present along with the carbon nanotubes. For the pulsed laser synthesized SWNTs, a combination of nitric acid, hydrogen peroxide and hydrochloric acid treatment gives best results and the purified SWNTs give best ever filling fraction for fullerene, C-60 of similar to90%. The processing improves the surface cleanliness of SWNTs, in turn giving greater access for the target molecules, and hence the higher filling fraction. For the carbon are produced SWNTs, air oxidation followed by treatment with nitric acid has been found to work best and the processed SWNTs have been used for filling experiments with metal chlorides. Both these processing schemes still leave a small fraction of catalyst impurities in tile final material, thus the material quality of filled material and hence its properties depend on the processed material used for the filling experiments.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 50 条
  • [31] Single Wall Carbon Nanotubes for Conductive Wiring
    Schauerman, Christopher M.
    Alvarenga, Jack
    Ganter, Matthew J.
    Seager, Thomas P.
    Landi, Brian J.
    Raffaelle, Ryne P.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON SUSTAINABLE SYSTEMS AND TECHNOLOGY, 2009, : 40 - +
  • [32] Hyperelastic behavior of single wall carbon nanotubes
    Center for Aerospace Research and Education, University of California at Irvine, 5251 California Ave., Irvine, CA 92612
    Journal of Applied Physics, 2007, 101 (06):
  • [33] STM on suspended single wall carbon nanotubes
    Hassanien, A
    Tokumoto, M
    Shimizu, T
    Tokumoto, H
    THIN SOLID FILMS, 2004, 464 : 338 - 341
  • [34] Thermochemistry of fluorinated single wall carbon nanotubes
    Bettinger, HF
    Kudin, KN
    Scuseria, GE
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (51) : 12849 - 12856
  • [35] Excitons in single-wall carbon nanotubes
    Bulashevich, K. A.
    Suris, R. A.
    Rotkin, S. V.
    International Journal of Nanoscience, Vol 2, No 6, 2003, 2 (06): : 521 - 526
  • [36] Colors of Single-Wall Carbon Nanotubes
    Wei, Nan
    Tian, Ying
    Liao, Yongping
    Komatsu, Natsumi
    Gao, Weilu
    Lyuleeva-Husemann, Alina
    Zhang, Qiang
    Hussain, Aqeel
    Ding, Er-Xiong
    Yao, Fengrui
    Halme, Janne
    Liu, Kaihui
    Kono, Junichiro
    Jiang, Hua
    Kauppinen, Esko I.
    ADVANCED MATERIALS, 2021, 33 (08)
  • [37] Piezoresistive behaviour of single wall carbon nanotubes
    Regoliosi, I
    Reale, A
    Di Carlo, I
    Orlanducci, S
    Terranova, ML
    Lugli, P
    2004 4TH IEEE CONFERENCE ON NANOTECHNOLOGY, 2004, : 149 - 151
  • [38] Ultralong single-wall carbon nanotubes
    Zheng, LX
    O'Connell, MJ
    Doorn, SK
    Liao, XZ
    Zhao, YH
    Akhadov, EA
    Hoffbauer, MA
    Roop, BJ
    Jia, QX
    Dye, RC
    Peterson, DE
    Huang, SM
    Liu, J
    Zhu, YT
    NATURE MATERIALS, 2004, 3 (10) : 673 - 676
  • [39] Exciton relaxation in single wall carbon nanotubes
    Lanzani, G
    Cerullo, G
    Gambetta, A
    Manzoni, C
    Menna, E
    Meneghetti, M
    SYNTHETIC METALS, 2005, 155 (02) : 246 - 249
  • [40] Properties of single-wall carbon nanotubes
    Yu, HY
    Jhang, SH
    Park, YW
    Bittar, A
    Trodahl, HJ
    Kaiser, AB
    SYNTHETIC METALS, 2001, 121 (1-3) : 1223 - 1224