On bipartite graphs with complete bipartite star complements

被引:6
|
作者
Rowlinson, Peter [1 ]
机构
[1] Univ Stirling, Inst Comp Sci & Math, Math & Stat Grp, Stirling FK9 4LA, Scotland
关键词
Bipartite graph; Eigenvalue; Star complement; Symmetric design;
D O I
10.1016/j.laa.2014.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a bipartite graph with mu as an eigenvalue of multiplicity k > 1. We show that if G has K-r,K-s (1 <= r <= s) as a star complement for mu then k <= s - 1; moreover if mu is non-main then k <= s - 2 for large enough s. We provide examples of graphs in which various bounds on k or s are attained. We also describe the bipartite graphs with K-1,K-s as a star complement for a non-main eigenvalue of multiplicity s - 1 > 1. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 50 条
  • [21] Unbalanced star-factorizations of complete bipartite graphs II
    Martin, Nigel
    GRAPHS AND COMBINATORICS, 2007, 23 (05) : 559 - 583
  • [22] Spanning trees in complete bipartite graphs and resistance distance in nearly complete bipartite graphs
    Ge, Jun
    Dong, Fengming
    DISCRETE APPLIED MATHEMATICS, 2020, 283 (283) : 542 - 554
  • [23] On the decomposition of graphs into complete bipartite graphs
    Dong, Jinquan
    Liu, Yanpei
    GRAPHS AND COMBINATORICS, 2007, 23 (03) : 255 - 262
  • [24] On the Decomposition of Graphs into Complete Bipartite Graphs
    Jinquan Dong
    Yanpei Liu
    Graphs and Combinatorics, 2007, 23 : 255 - 262
  • [25] Schur complements of matrices with acyclic bipartite graphs
    Britz, T
    Olesky, DD
    van den Driessche, P
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2005, 14 : 2 - 11
  • [26] ON γ-LABELINGS OF COMPLETE BIPARTITE GRAPHS
    Sanaka, Yuko
    ARS COMBINATORIA, 2013, 111 : 251 - 256
  • [27] Complete bipartite free graphs
    Cera, M
    Diánez, A
    García-Vázquez, P
    Valenzuela, JC
    ARS COMBINATORIA, 2003, 69 : 55 - 64
  • [28] ON PACKINGS OF COMPLETE BIPARTITE GRAPHS
    BEINEKE, LW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 277 - &
  • [29] Paintability of complete bipartite graphs
    Kashima, Masaki
    DISCRETE APPLIED MATHEMATICS, 2024, 346 : 279 - 289
  • [30] On the pagenumber of complete bipartite graphs
    Enomoto, H
    Nakamigawa, T
    Ota, K
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (01) : 111 - 120