Hierarchical feedback and learning for multi-joint arm movement control

被引:0
|
作者
Li, Weiwei [1 ]
Todorov, Emanuel [1 ]
Pan, Xiuchuan [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a general method for hierarchical feedback control of redundant systems, and applies it to the problem of arm movement control. A high-level feedback controller, designed using optimal control techniques, operates on a simplified virtual plant. A low-level controller is responsible for performing a feedback transformation of the physical plant into the desired virtual plant. The method is applied in the context of reaching with two realistic models of the human arm: a 2-DOF, 6-muscle model, and a 7-DOF, 14-muscle model. Simulation results demonstrate the effectiveness of the proposed scheme.
引用
收藏
页码:4400 / 4403
页数:4
相关论文
共 50 条
  • [31] Motion Control of a Multi-joint Robotic Fish Based on Biomimetic Learning
    Ren, Qinyuan
    Xu, Jianxin
    Guo, Zhaoqin
    Ru, Yi
    [J]. 2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 1566 - 1571
  • [32] Estimation of Involuntary Components of Human Arm Impedance in Multi-Joint Movements via Feedback Jerk Isolation
    Boerner, Hendrik
    Endo, Satoshi
    Hirche, Sandra
    [J]. FRONTIERS IN NEUROSCIENCE, 2020, 14 : 1 - 23
  • [33] Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control
    Hoogland, Tycho M.
    De Gruijl, Jornt R.
    Witter, Laurens
    Canto, Cathrin B.
    De Zeeuw, Chris I.
    [J]. CURRENT BIOLOGY, 2015, 25 (09) : 1157 - 1165
  • [34] Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm
    Bai, Chengchao
    Zhang, Jiawei
    Guo, Jifeng
    Yue, C. Patrick
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 5440 - 5451
  • [35] Differential exploitation of the inertia tensor in multi-joint arm reaching
    Bernardin, D
    Isableu, B
    Fourcade, P
    Bardy, BG
    [J]. EXPERIMENTAL BRAIN RESEARCH, 2005, 167 (04) : 487 - 495
  • [36] Differential exploitation of the inertia tensor in multi-joint arm reaching
    Delphine Bernardin
    Brice Isableu
    Paul Fourcade
    Benoît G. Bardy
    [J]. Experimental Brain Research, 2005, 167 : 487 - 495
  • [37] Adaptive iteration learning control and its applications for FNS multi-joint motion
    Wu, HY
    Zhou, ZY
    Xiong, SS
    Zhang, WD
    [J]. IMTC/2000: PROCEEDINGS OF THE 17TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE: SMART CONNECTIVITY: INTEGRATING MEASUREMENT AND CONTROL, 2000, : 983 - 987
  • [38] Model-Based Sensorimotor Integration for Multi-Joint Control: Development of a Virtual Arm Model
    D. Song
    N. Lan
    G. E. Loeb
    J. Gordon
    [J]. Annals of Biomedical Engineering, 2008, 36 : 1033 - 1048
  • [39] Controlling a multi-joint arm actuated by pneumatic muscles with quasi-DDP optimal control
    Das, G. Kumar Hari Shankar Lal
    Tondu, B.
    Forget, F.
    Manhes, J.
    Stasse, O.
    Soueres, P.
    [J]. 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 521 - 528
  • [40] Context-Aware Learning from Demonstration: Using Camera Data to Support the Synergistic Control of a Multi-Joint Prosthetic Arm
    Vasan, Gautham
    Pilarski, Patrick M.
    [J]. 2018 7TH IEEE INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB2018), 2018, : 199 - 206