Quantifying Model Uncertainties in Complex Systems

被引:0
|
作者
Yang, Jiarui [1 ]
Duan, Jinqiao [1 ]
机构
[1] IIT, Dept Appl Math, Chicago, IL 60616 USA
基金
美国国家科学基金会;
关键词
Model uncertainty; parameter estimation; Brownian motion (BM); fractional Brownian motion (fBM); Levy motion (LM); Hurst parameter; characteristic exponent; stochastic differential equations (SDEs); 1ST EXIT TIMES; DIFFUSION-COEFFICIENT; LIKELIHOOD-ESTIMATION; PARAMETER-ESTIMATION; ANOMALOUS DIFFUSION; POWER VARIATION; LEVY PROCESSES; DRIVEN; ESTIMATORS; INFERENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Uncertainties are abundant in complex systems. Appropriate mathematical models for these systems thus contain random effects or noises. The models are often in the form of stochastic differential equations, with some parameters to be determined by observations. The stochastic differential equations may be driven by Brownian motion, fractional Brownian motion, or Levy motion. After a brief overview of recent advances in estimating parameters in stochastic differential equations, various numerical algorithms for computing parameters are implemented. The numerical simulation results are shown to be consistent with theoretical analysis. Moreover, for fractional Brownian motion and alpha-stable Levy motion, several algorithms are reviewed and implemented to numerically estimate the Hurst parameter H and characteristic exponent alpha.
引用
收藏
页码:221 / 252
页数:32
相关论文
共 50 条
  • [1] Data and model uncertainties in complex aerospace engineering systems
    Pellissetti, M.
    Capiez-Lernout, E.
    Pradlwarter, H.
    Schueller, G. I.
    Soize, C.
    Structural Dynamics - EURODYN 2005, Vols 1-3, 2005, : 677 - 682
  • [2] Data and model uncertainties in complex aerospace engineering systems
    Capiez-Lernout, E.
    Pellissetti, M.
    Pradwarter, H.
    Schueller, G. I.
    Soize, C.
    JOURNAL OF SOUND AND VIBRATION, 2006, 295 (3-5) : 923 - 938
  • [3] Quantifying uncertainties in a national forecasting model
    Hugosson, MB
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2005, 39 (06) : 531 - 547
  • [4] Quantifying uncertainties on the solution model of seismic tomography
    Duffet, C
    Sinoquet, D
    INVERSE PROBLEMS, 2006, 22 (02) : 525 - 538
  • [5] QUANTIFYING MODEL UNCERTAINTIES AND SENSITIVITIES IN PARALLEL COMPRESSOR MODELS
    Voigt, Jonas
    Jurke, Keith-Noah
    Schultz, Julius
    Roemer, Ulrich
    Friedrichs, Jens
    PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 2D, 2021,
  • [6] Uncertainties in assessments of complex sediment systems
    Chapman, PM
    Birge, WJ
    Burgess, RM
    Clements, WH
    Douglas, WS
    Harrass, MC
    Hogstrand, C
    Reible, DD
    Ringwood, AH
    USE OF SEDIMENT: QUALITY GUIDELINES AND RELATED TOOLS FOR THE ASSESSMENT OF CONTAMINATED SEDIMENTS, 2005, : 687 - 744
  • [7] QUANTIFYING HPI UNCERTAINTIES
    FISHER, JN
    PHIPPS, AJ
    HYDROCARBON PROCESSING, 1971, 50 (03): : 63 - &
  • [8] A LINEAR, ROBUST AND CONVERGENT INTERPOLATORY ALGORITHM FOR QUANTIFYING MODEL UNCERTAINTIES
    RAMAN, S
    BAI, EW
    SYSTEMS & CONTROL LETTERS, 1992, 18 (03) : 173 - 177
  • [9] Classification of Uncertainties in Modeling of Complex Biological Systems
    Eskov, V. V.
    Filatova, D. Yu
    Ilyashenko, L. K.
    Vochmina, Yu V.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2019, 74 (01) : 57 - 63
  • [10] Classification of Uncertainties in Modeling of Complex Biological Systems
    V. V. Eskov
    D. Yu. Filatova
    L. K. Ilyashenko
    Yu. V. Vochmina
    Moscow University Physics Bulletin, 2019, 74 : 57 - 63