Hadamard Variational Formula for the Green Function for the Velocity and Pressure of the Stokes Equations

被引:3
|
作者
Ushikoshi, Erika [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
基金
日本学术振兴会;
关键词
Hadamard variational formula; Stokes equations; PARTIAL DIFFERENTIAL EQUATIONS; BOUNDARY-VALUE PROBLEMS; DOMAINS; OPERATOR;
D O I
10.1512/iumj.2013.62.5033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Hadamard variational formula for the Green function of the Stokes equations {G, R} which describes the motion of the incompressible fluids moving slowly in the bounded domain Omega with the smooth boundary partial derivative Omega an. Under the perturbation of domains keeping those volumes and topological types invariant, we not only refine the proof of its formula for the velocity G but we also develop a new formula for the pressure R. Our result may be regarded as the Hadamard variational formula for the Green functions as an example of the elliptic system of equations with the Dirichlet boundary condition.
引用
收藏
页码:1315 / 1379
页数:65
相关论文
共 50 条
  • [31] Hadamard’s variational formula in terms of stress and strain tensors
    Björn Gustafsson
    Ahmed Sebbar
    Analysis and Mathematical Physics, 2022, 12
  • [32] Hadamard's variational formula in terms of stress and strain tensors
    Gustafsson, Bjorn
    Sebbar, Ahmed
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [33] The Hadamard variational formula and the Minkowski problem for p-capacity
    Colesanti, A.
    Nystrom, K.
    Salani, P.
    Xiao, J.
    Yang, D.
    Zhang, G.
    ADVANCES IN MATHEMATICS, 2015, 285 : 1511 - 1588
  • [34] Spectral discretization of Darcy equations coupled with Stokes equations by vorticity-velocity-pressure formulations
    Mabrouki, Yassine
    Aouadi, Saloua Mani
    Satouri, Jamil
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (05) : 1628 - 1651
  • [35] Spectral discretization of the vorticity, velocity and pressure formulation of the Navier-Stokes equations
    Azaiez, Mejdi
    Bernardi, Christine
    Chorfi, Nejmeddine
    NUMERISCHE MATHEMATIK, 2006, 104 (01) : 1 - 26
  • [36] Resolution and implementation of the nonstationary vorticity velocity pressure formulation of the Navier–Stokes equations
    Mohamed Abdelwahed
    Ebtisam Alharbi
    Nejmeddine Chorfi
    Henda Ouertani
    Boundary Value Problems, 2020
  • [37] A pressure-based velocity decomposition procedure for the incompressible Navier–Stokes equations
    E. M. Wahba
    Meccanica, 2016, 51 : 1675 - 1684
  • [38] Variational principle for the Navier-Stokes equations
    Kerswell, RR
    PHYSICAL REVIEW E, 1999, 59 (05): : 5482 - 5494
  • [39] Adaptive variational multiscale method for the Stokes equations
    Song, Lina
    Hou, Yanren
    Zheng, Haibiao
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 71 (11) : 1369 - 1381
  • [40] A variational approach to the Navier-Stokes equations
    Gigli, Nicola
    Mosconi, Sunra J. N.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (03): : 256 - 276