Nonlinear Rayleigh-Taylor instabilities in fast Z pinches

被引:22
|
作者
Miles, Aaron R. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
drag; explosions; plasma nonlinear processes; plasma shock waves; plasma simulation; plasma turbulence; Rayleigh-Taylor instability; Z pinch; BUBBLE MERGER MODEL; ACCELERATION; DEPENDENCE; DRIVEN;
D O I
10.1063/1.3088020
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A simplified analytic model is presented to describe the implosion of a plasma column by an azimuthal magnetic field of sufficient magnitude to drive a strong shock wave into the plasma. This model is employed together with buoyancy-drag-based models of nonlinear single-mode and turbulent multimode Rayleigh-Taylor growth to investigate the mixing process in such fast Z pinches. These models give predictions that characterize limitations the instability can impose on the implosion in terms of maximum convergence ratios attainable for an axially coherent pinch. Both the implosion and instability models are validated with results from high-resolution numerical simulations.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] PRODUCTION OF REPRODUCIBLE RAYLEIGH-TAYLOR INSTABILITIES
    POPIL, R
    CURZON, FL
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1979, 50 (10): : 1291 - 1295
  • [22] Kinetic Simulations of Rayleigh-Taylor Instabilities
    Sagert, Irina
    Bauer, Wolfgang
    Colbry, Dirk
    Howell, Jim
    Staber, Alec
    Strother, Terrance
    30TH WINTER WORKSHOP ON NUCLEAR DYNAMICS (WWND2014), 2014, 535
  • [23] RAYLEIGH-TAYLOR INSTABILITIES IN STRATIFIED FLUIDS
    MIKAELIAN, KO
    PHYSICAL REVIEW A, 1982, 26 (04): : 2140 - 2158
  • [24] NONLINEAR GROWTH OF RAYLEIGH-TAYLOR INSTABILITIES AND MIXING IN SN-1987A
    HACHISU, I
    MATSUDA, T
    NOMOTO, K
    SHIGEYAMA, T
    ASTROPHYSICAL JOURNAL, 1990, 358 (02): : L57 - L61
  • [25] Analytic approach to nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities
    Mikaelian, KO
    PHYSICAL REVIEW LETTERS, 1998, 80 (03) : 508 - 511
  • [26] Rayleigh-Taylor instabilities with anisotropic lithospheric viscosity
    Lev, Einat
    Hager, Bradford H.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 173 (03) : 806 - 814
  • [27] The role of Rayleigh-Taylor instabilities in filament threads
    Terradas, J.
    Oliver, R.
    Ballester, J. L.
    ASTRONOMY & ASTROPHYSICS, 2012, 541
  • [28] THE DAMPING OF RAYLEIGH-TAYLOR INSTABILITIES IN A THETATRON DISCHARGE
    BODIN, HAB
    NEWTON, AA
    PEACOCK, NJ
    NUCLEAR FUSION, 1961, 1 (02) : 139 - 143
  • [29] Rayleigh-Taylor parallel modeling of hydrodynamic instabilities
    Berzigiyarov, P.K.
    Sultanov, V.G.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 2001, (01): : 41 - 48
  • [30] On 2D Rayleigh-Taylor instabilities
    Kamotski, V
    Lebeau, G
    ASYMPTOTIC ANALYSIS, 2005, 42 (1-2) : 1 - 27