Nonlinear Rayleigh-Taylor instabilities in fast Z pinches

被引:22
|
作者
Miles, Aaron R. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
drag; explosions; plasma nonlinear processes; plasma shock waves; plasma simulation; plasma turbulence; Rayleigh-Taylor instability; Z pinch; BUBBLE MERGER MODEL; ACCELERATION; DEPENDENCE; DRIVEN;
D O I
10.1063/1.3088020
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A simplified analytic model is presented to describe the implosion of a plasma column by an azimuthal magnetic field of sufficient magnitude to drive a strong shock wave into the plasma. This model is employed together with buoyancy-drag-based models of nonlinear single-mode and turbulent multimode Rayleigh-Taylor growth to investigate the mixing process in such fast Z pinches. These models give predictions that characterize limitations the instability can impose on the implosion in terms of maximum convergence ratios attainable for an axially coherent pinch. Both the implosion and instability models are validated with results from high-resolution numerical simulations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Suppression of Rayleigh-Taylor instabilities in Z-pinches
    A. S. Zhigalin
    A. G. Rousskikh
    R. B. Baksht
    S. A. Chaikovsky
    N. A. Labetskaya
    V. I. Oreshkin
    Technical Physics Letters, 2015, 41 : 554 - 556
  • [2] Suppression of Rayleigh-Taylor instabilities in Z-pinches
    Zhigalin, A. S.
    Rousskikh, A. G.
    Baksht, R. B.
    Chaikovsky, S. A.
    Labetskaya, N. A.
    Oreshkin, V. I.
    TECHNICAL PHYSICS LETTERS, 2015, 41 (06) : 554 - 556
  • [3] Heuristic model for the nonlinear Rayleigh-Taylor instability in fast Z pinches
    Hussey, T.W.
    Roderick, N.F.
    Shumlak, U.
    Spielman, R.B.
    Deeney, C.
    Physics of Plasmas, 1995, 2 (6 pt 1):
  • [4] A HEURISTIC MODEL FOR THE NONLINEAR RAYLEIGH-TAYLOR INSTABILITY IN FAST Z-PINCHES
    HUSSEY, TW
    RODERICK, NF
    SHUMLAK, U
    SPIELMAN, RB
    DEENEY, C
    PHYSICS OF PLASMAS, 1995, 2 (06) : 2055 - 2062
  • [5] On nonlinear Rayleigh-Taylor instabilities
    Desjardins, B.
    Grenier, E.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1007 - 1016
  • [6] On Nonlinear Rayleigh-Taylor Instabilities
    B.DESJARDINS
    E.GRENIER
    Acta Mathematica Sinica,English Series, 2006, 22 (04) : 1007 - 1016
  • [7] Plasma formation and seeding of Rayleigh-Taylor instabilities in wire array z-pinches
    Lebedev, S.V.
    Chittenden, J.P.
    Bland, S.N.
    Beg, F.N.
    Dangor, A.E.
    Haines, M.G.
    Pikuz, S.A.
    Shelkovenko, T.A.
    IEEE International Conference on Plasma Science, 2000,
  • [8] Stabilization of viscosity on Rayleigh-Taylor instability in Z pinches
    Qui, XM
    Huang, L
    Jian, GD
    CHINESE PHYSICS LETTERS, 2004, 21 (04) : 689 - 692
  • [9] Two-dimensional modeling of magnetically driven Rayleigh-Taylor instabilities in cylindrical Z pinches
    Peterson, DL
    Bowers, RL
    Brownell, JH
    Greene, AE
    McLenithan, KD
    Oliphant, TA
    Roderick, NF
    Scannapieco, AJ
    PHYSICS OF PLASMAS, 1996, 3 (01) : 368 - 381
  • [10] GROWTH OF RAYLEIGH-TAYLOR AND BULK CONVECTIVE INSTABILITIES IN DYNAMICS OF PLASMA LINERS AND PINCHES
    BUDKO, AB
    VELIKOVICH, AL
    LIBERMAN, MA
    FELBER, FS
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1989, 96 (01): : 140 - 162