Diffraction of spherical waves by a toroidal obstacle: Eikonal approach to excitable reaction-diffusion systems

被引:2
|
作者
Mulholland, AJ
Gomatam, J
McQuillan, P
机构
[1] Department of Mathematics, Glasgow Caledonian University, Glasgow G4 DBA, Cowcaddens Road
关键词
D O I
10.1098/rspa.1996.0147
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diffraction of spherical waves by a toroidal obstacle is analysed using the eikonal approximation to the reaction-diffusion equations with excitable kinetics. We demonstrate the existence of two stationary spherical wave segments, one larger and the other smaller than a hemisphere, blocking the hole of the torus. A detailed stability analysis indicates that the former is unstable and the latter is stable. This analysis suggests that the trapping of a spherical wave front by a toroidal obstacle may be verified experimentally using a chemical medium like the Belouzov-Zhabotinsky reagent in the excitable regime.
引用
收藏
页码:2785 / 2799
页数:15
相关论文
共 50 条
  • [31] Excitable reaction-diffusion waves of curvature-inducing proteins on deformable membrane tubes
    Tamemoto, Naoki
    Noguchi, Hiroshi
    [J]. PHYSICAL REVIEW E, 2022, 106 (02)
  • [32] The effects of obstacle size on periodic travelling waves in oscillatory reaction-diffusion equations
    Smith, Matthew J.
    Sherratt, Jonathan A.
    Armstrong, Nicola J.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2090): : 365 - 390
  • [33] Travelling Waves in Partially Degenerate Reaction-Diffusion Systems
    Kazmierczak, B.
    Volpert, V.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2007, 2 (02) : 106 - 125
  • [34] Comment on "Antispiral waves in reaction-diffusion systems" - Reply
    Gong, YF
    Christini, DJ
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (08)
  • [35] Traveling waves of delayed reaction-diffusion systems with applications
    Yu, Zhi-Xian
    Yuan, Rong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2475 - 2488
  • [36] Chemical waves and spatial structures in reaction-diffusion systems
    Póta, G
    [J]. ACH-MODELS IN CHEMISTRY, 1998, 135 (05): : 677 - 748
  • [37] Spiral waves in linearly coupled reaction-diffusion systems
    Yang, Hujiang
    Yang, Junzhong
    [J]. PHYSICAL REVIEW E, 2007, 76 (01):
  • [38] CHEMICAL WAVES AS A RESULT OF INSTABILITY IN REACTION-DIFFUSION SYSTEMS
    LIVSHITS, MA
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1983, 53 (01): : 83 - 88
  • [39] New effects in propagation of waves for reaction-diffusion systems
    Vakulenko, S
    Volpert, V
    [J]. ASYMPTOTIC ANALYSIS, 2004, 38 (01) : 11 - 33
  • [40] Controlling the Position of Traveling Waves in Reaction-Diffusion Systems
    Loeber, Jakob
    Engel, Harald
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (14)