Impact of F1Fo-ATP-synthase dimer assembly factors on mitochondrial function and organismic aging

被引:15
|
作者
Rampello, Nadia G. [1 ,2 ]
Stenger, Maria [3 ]
Westermann, Benedikt [3 ]
Osiewacz, Heinz D. [1 ,2 ]
机构
[1] Goethe Univ Frankfurt, Dept Biosci, Mol Dev Biol, Inst Mol Biosci, D-60438 Frankfurt, Germany
[2] Goethe Univ Frankfurt, Cluster Excellence Frankfurt Macromol Complexes, D-60438 Frankfurt, Germany
[3] Univ Bayreuth, Cell Biol & Electron Microscopy, D-95440 Bayreuth, Germany
来源
MICROBIAL CELL | 2018年 / 5卷 / 04期
关键词
aging; F1Fo-ATP-synthase; membranes; mitochondria; remodeling; ASCOMYCETE PODOSPORA-ANSERINA; CRISTAE ORGANIZING SYSTEM; INNER-MEMBRANE CRISTAE; CYTOCHROME-C-OXIDASE; ATP SYNTHASE DIMERS; PLASMID-LIKE DNA; F1F0-ATP SYNTHASE; CONTACT SITE; FILAMENTOUS FUNGUS; QUALITY-CONTROL;
D O I
10.15698/mic2018.04.625
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In aerobic organisms, mitochondrial F1Fo-ATP-synthase is the major site of ATP production. Beside this fundamental role, the protein complex is involved in shaping and maintenance of cristae. Previous electron microscopic studies identified the dissociation of F1Fo-ATP-synthase dimers and oli-gomers during organismic aging correlating with a massive remodeling of the mitochondrial inner membrane. Here we report results aimed to experimentally proof this impact and to obtain further insights into the control of these processes. We focused on the role of the two dimer assembly factors PaATPE and PaATPG of the aging model Podospora anserina. Ablation of either protein strongly affects mitochondrial function and leads to an accumulation of senescence markers demonstrating that the inhibition of dimer formation negatively influences vital functions and accelerates organismic aging. Our data validate a model that links mitochondrial membrane remodeling to aging and identify specific molecular components triggering this process.
引用
收藏
页码:198 / 207
页数:10
相关论文
共 50 条
  • [21] Supramolecular organization of the yeast F1Fo-ATP synthase
    Thomas, Daniel
    Bron, Patrick
    Weimann, Theodore
    Dautant, Alain
    Giraud, Marie-France
    Paumard, Patrick
    Salin, Benedicte
    Cavalier, Annie
    Velours, Jean
    Brethes, Daniel
    BIOLOGY OF THE CELL, 2008, 100 (10) : 591 - 601
  • [22] The interface between monomers of the F1FO-ATP synthase dimer confers resistance against heavy metals
    Garcia-Cruz, Giovanni
    Esparza-Perusquia, Mercedes
    Martinez, Federico
    Pablo Pardo, Juan
    Miranda-Astudillo, Hector
    Flores-Herrera, Oscar
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2024, 1865 : 75 - 75
  • [23] F1FO ATP synthase molecular motor mechanisms
    Frasch, Wayne D.
    Bukhari, Zain A.
    Yanagisawa, Seiga
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [24] IF1: setting the pace of the F1Fo-ATP synthase
    Campanella, Michelangelo
    Parker, Nadeene
    Tan, Choon Hong
    Hall, Andrew M.
    Duchen, Michael R.
    TRENDS IN BIOCHEMICAL SCIENCES, 2009, 34 (07) : 343 - 350
  • [25] The assembly of F1FO-ATP synthase is disrupted upon interference of RNA editing in Trypanosoma brucei
    Hashimi, Hassan
    Benkovicova, Vladislava
    Cermakova, Petra
    Lai, De-Hua
    Horvath, Anton
    Lukes, Julius
    INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2010, 40 (01) : 45 - 54
  • [26] Mitochondrial F1FO ATP synthase determines the local proton motive force at cristae rims
    Rieger, Bettina
    Arroum, Tasnim
    Borowski, Marie-Theres
    Villalta, Jimmy
    Busch, Karin B.
    EMBO REPORTS, 2021, 22 (12)
  • [27] Mitochondrial F1FO ATP synthase determines the local proton motive force at cristae rims
    Busch, Karin B.
    Rieger, Bettina
    Arroum, Tasnim
    Borowski, Marie-Theres
    Villalta, Jimmy
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 143 - 144
  • [28] Crucial aminoacids in the FO sector of the F1FO-ATP synthase address H+ across the inner mitochondrial membrane: molecular implications in mitochondrial dysfunctions
    Fabiana Trombetti
    Alessandra Pagliarani
    Vittoria Ventrella
    Cristina Algieri
    Salvatore Nesci
    Amino Acids, 2019, 51 : 579 - 587
  • [29] Crucial aminoacids in the FO sector of the F1FO-ATP synthase address H+ across the inner mitochondrial membrane: molecular implications in mitochondrial dysfunctions
    Trombetti, Fabiana
    Pagliarani, Alessandra
    Ventrella, Vittoria
    Algieri, Cristina
    Nesci, Salvatore
    AMINO ACIDS, 2019, 51 (04) : 579 - 587
  • [30] Mitochondrial Contact Site and Cristae Organization System and F1FO-ATP Synthase Crosstalk Is a Fundamental Property of Mitochondrial Cristae
    Cadena, Lawrence Rudy
    Gahura, Ondrej
    Panicucci, Brian
    Zikova, Alena
    Hashimi, Hassan
    MSPHERE, 2021, 6 (03)