Acetone-butanol-ethanol fermentation of corn stover by Clostridium species: present status and future perspectives

被引:25
|
作者
Li, Jianzheng [1 ]
Baral, Nawa Raj [1 ,2 ]
Jha, Ajay Kumar [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Sch Municipal & Environm Engn, Harbin 150090, Peoples R China
[2] Tribhuvan Univ, Inst Engn, Dept Mech Engn, Kathmandu, Nepal
来源
基金
中国国家自然科学基金;
关键词
Bio-butanol; Corn stover; Fermentation pathways; Clostridium species; Microbial inhibitor; Optimization; BEIJERINCKII BA101; STRAW HYDROLYSATE; TOLERANT STRAIN; WHEAT-STRAW; PART I; ACETOBUTYLICUM; BIOMASS; FIBER; OPTIMIZATION; PRETREATMENT;
D O I
10.1007/s11274-013-1542-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Sustainable vehicle fuel is indispensable in future due to worldwide depletion of fossil fuel reserve, oil price fluctuation and environmental degradation. Microbial production of butanol from renewable biomass could be one of the possible options. Renewable biomass such as corn stover has no food deficiency issues and is also cheaper in most of the agricultural based countries. Thus it can effectively solve the existing issue of substrate cost. In the last 30 years, a few of Clostridium strains have been successfully implemented for biobutanol fermentation. However, the commercial production is hindered due to their poor tolerance to butanol and inhibitors. Metabolic engineering of Clostridia strains is essential to solve above problems and ultimately enhance the solvent production. An effective and efficient pretreatment of raw material as well as optimization of fermentation condition could be another option. Furthermore, biological approaches may be useful to optimize both the host and pathways to maximize butanol production. In this context, this paper reviews the existing Clostridium strains and their ability to produce butanol particularly from corn stover. This study also highlights possible fermentation pathways and biological approaches that may be useful to optimize fermentation pathways. Moreover, challenges and future perspectives are also discussed.
引用
收藏
页码:1145 / 1157
页数:13
相关论文
共 50 条
  • [31] Novel dual extraction process for acetone-butanol-ethanol fermentation
    Kurkijarvi, Antti
    Lehtonen, Juha
    Linnekoski, Juha
    SEPARATION AND PURIFICATION TECHNOLOGY, 2014, 124 : 18 - 25
  • [32] Waste valorization through acetone-butanol-ethanol (ABE) fermentation
    Chen, Chung-Wei
    Yu, Wei-Sheng
    Zheng, Zong-Xuan
    Cheng, Yu-Shen
    Li, Si-Yu
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024, 160
  • [33] Acetone-butanol-ethanol fermentation products recovery: Challenges and opportunities
    Rafieyan, Saeed
    Boojari, Mohammad Amin
    Setayeshnia, Ali
    Fakhroleslam, Mohammad
    Sanchez-Ramirez, Eduardo
    Bay, Mohammad Saber
    Segovia-Hernandez, Juan Gabriel
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 205 : 640 - 664
  • [34] Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption
    Xue, Chuang
    Liu, Fangfang
    Xu, Mengmeng
    Tang, I-Ching
    Zhao, Jingbo
    Bai, Fengwu
    Yang, Shang-Tian
    BIORESOURCE TECHNOLOGY, 2016, 219 : 158 - 168
  • [35] Well-to-wheel analysis of energy use and greenhouse gas emissions of acetone-butanol-ethanol from corn and corn stover
    Desta, Melaku
    Lee, Timothy
    Wu, Han
    RENEWABLE ENERGY, 2021, 170 : 72 - 80
  • [36] Acetone-butanol-ethanol production from corn stover pretreated by alkaline twin-screw extrusion pretreatment
    Zhang, Yuedong
    Hou, Tongang
    Li, Bin
    Liu, Chao
    Mu, Xindong
    Wang, Haisong
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2014, 37 (05) : 913 - 921
  • [37] Carbonized biomass as an immobilization carrier in acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii JCM 8026
    Sae-hun, Sarita
    Chinwatpaiboon, Piyawat
    Boonsombuti, Akarin
    Savarajara, Ancharida
    Luengnaruemitchai, Apanee
    BIOMASS CONVERSION AND BIOREFINERY, 2022, 14 (22) : 28105 - 28115
  • [38] Production of acetone-butanol-ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii
    Ezeji, Thaddeus
    Qureshi, Nasib
    Blaschek, Hans P.
    PROCESS BIOCHEMISTRY, 2007, 42 (01) : 34 - 39
  • [39] Mathematical Modeling of Acetone-Butanol-Ethanol Fermentation with Simultaneous Utilization of Glucose and Xylose by Recombinant Clostridium acetobutylicum
    Lim, Jongkoo
    Byun, Ha-Eun
    Kim, Boeun
    Park, Hyerin
    Lee, Jay H.
    ENERGY & FUELS, 2019, 33 (09) : 8620 - 8631
  • [40] Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans
    Wen, Zhiqiang
    Wu, Mianbin
    Lin, Yijun
    Yang, Lirong
    Lin, Jianping
    Cen, Peilin
    MICROBIAL CELL FACTORIES, 2014, 13