QN inversion of large-scale MT data

被引:0
|
作者
Avdeeva, A. D. [1 ]
Avdeev, D. B. [1 ,2 ]
机构
[1] Dublin Inst Adv Studies, 10 Burlington Rd, Dublin 4, Ireland
[2] Russian Acad Sci, IZMIRAN, Moscow, Russia
来源
PIERS 2006 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS | 2006年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A limited memory quasi-Newton (QN) method with simple bounds is applied to a 1-D magnetotelluric (MT) problem. The method is used to invert a realistic synthetic MT impedance dataset, calculated for a layered earth model. An adjoint method is employed to calculate the gradients and to speed up the inverse problem solution. In addition, it is shown that regularization stabilizes the QN inversion result. We demonstrate that only a few correction pairs are enough to produce reasonable results. Comparison with inversion based on known L-BFGS-B optimization algorithm shows similar convergence rates. The study presented is a first step towards the solution of large-scale electromagnetic problems with a full 3-D conductivity structure of the Earth.
引用
收藏
页码:210 / +
页数:2
相关论文
共 50 条
  • [21] Approximate Matrix Inversion for High-Throughput Data Detection in the Large-Scale MIMO Uplink
    Wu, Michael
    Yin, Bei
    Vosoughi, Aida
    Studer, Christoph
    Cavallaro, Joseph R.
    Dick, Chris
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 2155 - 2158
  • [22] LARGE-SCALE FOREST HEIGHT INVERSION OVER MEDITERRANEAN AREA WITH TANDEM-X DATA
    Zhang, T.
    Fu, H.
    Zhu, J.
    Gomez, C.
    Lopez-Sanchez, J. M.
    He, W.
    Xie, Y.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3330 - 3333
  • [23] Scalable Algorithms for Bayesian Inference of Large-Scale Models from Large-Scale Data
    Ghattas, Omar
    Isaac, Tobin
    Petra, Noemi
    Stadler, Georg
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2016, 2017, 10150 : 3 - 6
  • [24] Large-Scale Reasoning with (Semantic) Data
    Antoniou, Grigoris
    Batsakis, Sotiris
    Tachmazidis, Ilias
    4TH INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, MINING AND SEMANTICS, 2014,
  • [25] Data Provenance in Large-Scale Distribution
    Zhu, Yunan
    Che, Wei
    Shan, Chao
    Zhao, Shen
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT III, 2022, 13340 : 28 - 42
  • [26] An overview of a large-scale data migration
    Lübeck, M
    Geppert, D
    Nienartowicz, K
    Nowak, M
    Valassi, A
    20TH IEEE/11TH NASA GODDARD CONFERENCE ON MASS STORAGE AND TECHNOLOGIES (MSST 2003), PROCEEDINGS, 2003, : 49 - 55
  • [27] Unfolding large-scale marketing data
    Ho, Ying
    Chung, Yuho
    Lau, Kin-nam
    INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING, 2010, 27 (02) : 119 - 132
  • [28] Large-Scale Visual Data Analysis
    Johnson, Chris
    2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2012, : 1 - 1
  • [29] Large-scale parallel data clustering
    Judd, D
    McKinley, PK
    Jain, AK
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (08) : 871 - 876
  • [30] Large-Scale Web Data Analysis
    Leskovec, Jure
    IEEE INTELLIGENT SYSTEMS, 2011, 26 (01) : 11 - 11