Identifying Predictors of Psychological Distress During COVID-19: A Machine Learning Approach

被引:103
|
作者
Prout, Tracy A. [1 ]
Zilcha-Mano, Sigal [2 ]
Aafjes-van Doorn, Katie [3 ]
Bekes, Vera [3 ]
Christman-Cohen, Isabelle [1 ]
Whistler, Kathryn [1 ]
Kui, Thomas [1 ]
Di Giuseppe, Mariagrazia [4 ]
机构
[1] Yeshiva Univ, Sch Clin Child Psychol Program, Ferkauf Grad Sch Psychol, Bronx, NY 10461 USA
[2] Univ Haifa, Dept Psychol, Haifa, Israel
[3] Yeshiva Univ, Ferkauf Grad Sch Psychol, Clin Psychol Program, Bronx, NY USA
[4] Univ Pisa, Dept Surg Med & Mol Pathol & Crit Care Med, Pisa, Italy
来源
FRONTIERS IN PSYCHOLOGY | 2020年 / 11卷
关键词
COVID-19; pandemic; emotion regulation; somatization; machine learning; anxiety; depression; post-traumatic stress; defense mechanisms; DEFENSE-MECHANISMS; DEPRESSION; SEVERITY; VALIDITY; DISORDER; THERAPY;
D O I
10.3389/fpsyg.2020.586202
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Scientific understanding about the psychological impact of the COVID-19 global pandemic is in its nascent stage. Prior research suggests that demographic factors, such as gender and age, are associated with greater distress during a global health crisis. Less is known about how emotion regulation impacts levels of distress during a pandemic. The present study aimed to identify predictors of psychological distress during the COVID-19 pandemic. Participants (N = 2,787) provided demographics, history of adverse childhood experiences, current coping strategies (use of implicit and explicit emotion regulation), and current psychological distress. The overall prevalence of clinical levels of anxiety, depression, and post-traumatic stress was higher than the prevalence outside a pandemic and was higher than rates reported among healthcare workers and survivors of severe acute respiratory syndrome. Younger participants (<45 years), women, and non-binary individuals reported higher prevalence of symptoms across all measures of distress. A random forest machine learning algorithm was used to identify the strongest predictors of distress. Regression trees were developed to identify individuals at greater risk for anxiety, depression, and post-traumatic stress. Somatization and less reliance on adaptive defense mechanisms were associated with greater distress. These findings highlight the importance of assessing individuals' physical experiences of psychological distress and emotion regulation strategies to help mental health providers tailor assessments and treatment during a global health crisis.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Predictors for extubation failure in COVID-19 patients using a machine learning approach
    Lucas M. Fleuren
    Tariq A. Dam
    Michele Tonutti
    Daan P. de Bruin
    Robbert C. A. Lalisang
    Diederik Gommers
    Olaf L. Cremer
    Rob J. Bosman
    Sander Rigter
    Evert-Jan Wils
    Tim Frenzel
    Dave A. Dongelmans
    Remko de Jong
    Marco Peters
    Marlijn J. A. Kamps
    Dharmanand Ramnarain
    Ralph Nowitzky
    Fleur G. C. A. Nooteboom
    Wouter de Ruijter
    Louise C. Urlings-Strop
    Ellen G. M. Smit
    D. Jannet Mehagnoul-Schipper
    Tom Dormans
    Cornelis P. C. de Jager
    Stefaan H. A. Hendriks
    Sefanja Achterberg
    Evelien Oostdijk
    Auke C. Reidinga
    Barbara Festen-Spanjer
    Gert B. Brunnekreef
    Alexander D. Cornet
    Walter van den Tempel
    Age D. Boelens
    Peter Koetsier
    Judith Lens
    Harald J. Faber
    A. Karakus
    Robert Entjes
    Paul de Jong
    Thijs C. D. Rettig
    Sesmu Arbous
    Sebastiaan J. J. Vonk
    Mattia Fornasa
    Tomas Machado
    Taco Houwert
    Hidde Hovenkamp
    Roberto Noorduijn Londono
    Davide Quintarelli
    Martijn G. Scholtemeijer
    Aletta A. de Beer
    Critical Care, 25
  • [22] Predictors for extubation failure in COVID-19 patients using a machine learning approach
    Fleuren, Lucas M.
    Dam, Tariq A.
    Tonutti, Michele
    de Bruin, Daan P.
    Lalisang, Robbert C. A.
    Gommers, Diederik
    Cremer, Olaf L.
    Bosman, Rob J.
    Rigter, Sander
    Wils, Evert-Jan
    Frenzel, Tim
    Dongelmans, Dave A.
    de Jong, Remko
    Peters, Marco
    Kamps, Marlijn J. A.
    Ramnarain, Dharmanand
    Nowitzky, Ralph
    Nooteboom, Fleur G. C. A.
    de Ruijter, Wouter
    Urlings-Strop, Louise C.
    Smit, Ellen G. M.
    Mehagnoul-Schipper, D. Jannet
    Dormans, Tom
    de Jager, Cornelis P. C.
    Hendriks, Stefaan H. A.
    Achterberg, Sefanja
    Oostdijk, Evelien
    Reidinga, Auke C.
    Festen-Spanjer, Barbara
    Brunnekreef, Gert B.
    Cornet, Alexander D.
    van den Tempel, Walter
    Boelens, Age D.
    Koetsier, Peter
    Lens, Judith
    Faber, Harald J.
    Karakus, A.
    Entjes, Robert
    de Jong, Paul
    Rettig, Thijs C. D.
    Arbous, Sesmu
    Vonk, Sebastiaan J. J.
    Fornasa, Mattia
    Machado, Tomas
    Houwert, Taco
    Hovenkamp, Hidde
    Londono, Roberto Noorduijn
    Quintarelli, Davide
    Scholtemeijer, Martijn G.
    de Beer, Aletta A.
    CRITICAL CARE, 2021, 25 (01)
  • [23] Psychological distress during the COVID-19 pandemic: An integrative perspective
    Mahat-Shamir, Michal
    Zychlinski, Ester
    Kagan, Maya
    PLOS ONE, 2023, 18 (10):
  • [24] Maternal Functioning and Psychological Distress During the COVID-19 Pandemic
    Lax, Elizabeth S.
    Novak, Sarah A.
    Webster, Gregory D.
    JOURNAL OF WOMENS HEALTH, 2023, 32 (02) : 138 - 149
  • [25] Psychological Distress in the Galapagos Islands During the COVID-19 Pandemic
    Paz, Clara
    Abiuso, Trinidad
    Adana-Diaz, Lila
    Rodriguez-Lorenzana, Alberto
    Jaramillo-Vivanco, Tatiana
    Ortiz-Prado, Esteban
    Paez Monge, Ignacia
    Mascialino, Guido
    INTERNATIONAL JOURNAL OF PUBLIC HEALTH, 2022, 67
  • [26] Psychological Distress in Outpatients With Lymphoma During the COVID-19 Pandemic
    Romito, Francesca
    Dellino, Miriam
    Loseto, Giacomo
    Opinto, Giuseppina
    Silvestris, Erica
    Cormio, Claudia
    Guarini, Attilio
    Minoia, Carla
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [27] Psychological Predictors of Socioeconomic Resilience Amidst the COVID-19 Pandemic: Evidence From Machine Learning
    Sheetal, Abhishek
    Ma, Anyi
    Infurna, Frank J.
    AMERICAN PSYCHOLOGIST, 2024, 79 (08) : 1139 - 1154
  • [28] Civic engagement and psychological distress during the COVID-19 pandemic
    Rachel J. Topazian
    Adam S. Levine
    Emma E. McGinty
    Colleen L. Barry
    Hahrie Han
    BMC Public Health, 22
  • [29] Psychological distress of college students during the COVID-19 pandemic
    Hughes, Joel W.
    Vander Horst, Anthony
    Gibson, Gregory C.
    Cleveland, Kimberly A.
    Wawrosch, Craig
    Hunt, Cynthia
    Granot, Maya
    Woolverton, Christopher J.
    JOURNAL OF AMERICAN COLLEGE HEALTH, 2023, 71 (04) : 981 - 983
  • [30] Civic engagement and psychological distress during the COVID-19 pandemic
    Topazian, Rachel J.
    Levine, Adam S.
    McGinty, Emma E.
    Barry, Colleen L.
    Han, Hahrie
    BMC PUBLIC HEALTH, 2022, 22 (01)