A Simple and Effective Fusion Approach for Multi-frame Optical Flow Estimation

被引:0
|
作者
Ren, Zhile [1 ]
Gallo, Orazio [2 ]
Sun, Deqing [2 ]
Yang, Ming-Hsuan [3 ]
Sudderth, Erik B. [4 ]
Kautz, Jan [2 ]
机构
[1] Brown Univ, Providence, RI 02912 USA
[2] NVIDIA, Santa Clara, CA 95051 USA
[3] UC Merced, Merced, CA USA
[4] UC Irvine, Irvine, CA USA
关键词
Multi-frame optical flow; Temporal optical flow fusion;
D O I
10.1007/978-3-030-11024-6_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To date, top-performing optical flow estimation methods only take pairs of consecutive frames into account. While elegant and appealing, the idea of using more than two frames has not yet produced state-of-the-art results. We present a simple, yet effective fusion approach for multi-frame optical flow that benefits from longer-term temporal cues. Our method first warps the optical flow from previous frames to the current, thereby yielding multiple plausible estimates. It then fuses the complementary information carried by these estimates into a new optical flow field. At the time of writing, our method ranks first among published results in the MPI Sintel and KITTI 2015 benchmarks.
引用
收藏
页码:706 / 710
页数:5
相关论文
共 50 条
  • [41] TemporalFusion: Temporal Motion Reasoning with Multi-Frame Fusion for 6D Object Pose Estimation
    Mu, Fengjun
    Huang, Rui
    Luo, Ao
    Li, Xin
    Qiu, Jing
    Cheng, Hong
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 5930 - 5936
  • [42] Multi-Frame Amplitude Envelope Estimation for Modification of Singing Voice
    Degottex, Gilles
    Ardaillon, Luc
    Roebel, Axel
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2016, 24 (07) : 1242 - 1254
  • [43] Unsupervised Learning Optical Flow in Multi-frame Dynamic Environment Using Temporal Dynamic Modeling
    Sun, Zitang
    Nishida, Shin'ya
    Luo, Zhengbo
    arXiv, 2023,
  • [44] Multi-frame DOA Estimation Algorithm for Weak Moving Targets
    Zhang, Penghui
    Liu, Kezhu
    Li, Wujun
    Yi, Wei
    Yang, Xiaobo
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [45] Unsupervised learning of optical flow in a multi-frame dynamic environment using temporal dynamic modeling
    Zitang Sun
    Zhengbo Luo
    Shin’ya Nishida
    Complex & Intelligent Systems, 2024, 10 : 2215 - 2231
  • [46] Multi-frame motion estimation: Application to motion compensated prediction
    Gibson, D
    Spann, M
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 4: IMAGE AND VIDEO PROCESSING, MULTIMEDIA, AND COMMUNICATIONS, 1999, : 54 - 57
  • [47] Unsupervised learning of optical flow in a multi-frame dynamic environment using temporal dynamic modeling
    Sun, Zitang
    Luo, Zhengbo
    Nishida, Shin'ya
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 2215 - 2231
  • [48] Removing multi-frame Gaussian noise by combining patch-based filters with optical flow
    Bodduna, Kireeti
    Weickert, Joachim
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (03)
  • [49] Multi-frame feature-fusion-based model for violence detection
    Asad, Mujtaba
    Yang, Jie
    He, Jiang
    Shamsolmoali, Pourya
    He, Xiangjian
    VISUAL COMPUTER, 2021, 37 (06): : 1415 - 1431
  • [50] Multi-frame feature-fusion-based model for violence detection
    Mujtaba Asad
    Jie Yang
    Jiang He
    Pourya Shamsolmoali
    Xiangjian He
    The Visual Computer, 2021, 37 : 1415 - 1431