A Simple and Effective Fusion Approach for Multi-frame Optical Flow Estimation

被引:0
|
作者
Ren, Zhile [1 ]
Gallo, Orazio [2 ]
Sun, Deqing [2 ]
Yang, Ming-Hsuan [3 ]
Sudderth, Erik B. [4 ]
Kautz, Jan [2 ]
机构
[1] Brown Univ, Providence, RI 02912 USA
[2] NVIDIA, Santa Clara, CA 95051 USA
[3] UC Merced, Merced, CA USA
[4] UC Irvine, Irvine, CA USA
关键词
Multi-frame optical flow; Temporal optical flow fusion;
D O I
10.1007/978-3-030-11024-6_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To date, top-performing optical flow estimation methods only take pairs of consecutive frames into account. While elegant and appealing, the idea of using more than two frames has not yet produced state-of-the-art results. We present a simple, yet effective fusion approach for multi-frame optical flow that benefits from longer-term temporal cues. Our method first warps the optical flow from previous frames to the current, thereby yielding multiple plausible estimates. It then fuses the complementary information carried by these estimates into a new optical flow field. At the time of writing, our method ranks first among published results in the MPI Sintel and KITTI 2015 benchmarks.
引用
收藏
页码:706 / 710
页数:5
相关论文
共 50 条
  • [1] A Fusion Approach for Multi-Frame Optical Flow Estimation
    Ren, Zhile
    Gallo, Orazio
    Sun, Deqing
    Yang, Ming-Hsuan
    Sudderth, Erik B.
    Kautz, Jan
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 2077 - 2086
  • [2] M-FUSE: Multi-frame Fusion for Scene Flow Estimation
    Mehl, Lukas
    Jahedi, Azin
    Schmalfuss, Jenny
    Bruhn, Andres
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2019 - 2028
  • [3] VideoFlow: Exploiting Temporal Cues for Multi-frame Optical Flow Estimation
    Shi, Xiaoyu
    Huang, Zhaoyang
    Bian, Weikang
    Li, Dasong
    Zhang, Manyuan
    Cheung, Ka Chun
    See, Simon
    Qin, Hongwei
    Dai, Jifeng
    Li, Hongsheng
    arXiv, 2023,
  • [4] SSTM: Spatiotemporal recurrent transformers for multi-frame optical flow estimation
    Ferede, Fisseha Admasu
    Balasubramanian, Madhusudhanan
    NEUROCOMPUTING, 2023, 558
  • [5] Multi-frame optical flow estimation with oriented smoothness in the direction of motion
    Feghali, R
    ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2, 2003, : 1147 - 1152
  • [6] VideoFlow: Exploiting Temporal Cues for Multi-frame Optical Flow Estimation
    Shi, Xiaoyu
    Huang, Zhaoyang
    Bian, Weikang
    Li, Dasong
    Zhang, Manyuan
    Cheung, Ka Chun
    See, Simon
    Qin, Hongwei
    Dai, Jifeng
    Li, Hongsheng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12435 - 12446
  • [7] GSDC Transformer: An Efficient and Effective Cue Fusion for Monocular Multi-Frame Depth Estimation
    Fang, Naiyu
    Qiu, Lemiao
    Zhang, Shuyou
    Wang, Zili
    Zhou, Zheyuan
    Hu, Kerui
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2256 - 2263
  • [8] STaRFlow: A SpatioTemporal Recurrent Cell for Lightweight Multi-Frame Optical Flow Estimation
    Godet, Pierre
    Boulch, Alexandre
    Plyer, Aurelien
    Le Besnerais, Guy
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2462 - 2469
  • [9] MFCFlow : A Motion Feature Compensated Multi-Frame Recurrent Network for Optical Flow Estimation
    Chen, Yonghu
    Zhu, Dongchen
    Shi, Wenjun
    Zhang, Guanghui
    Zhang, Tianyu
    Zhang, Xiaolin
    Li, Jiamao
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5057 - 5066
  • [10] OptiFlex: Multi-Frame Animal Pose Estimation Combining Deep Learning With Optical Flow
    Liu, XiaoLe
    Yu, Si-yang
    Flierman, Nico A.
    Loyola, Sebastian
    Kamermans, Maarten
    Hoogland, Tycho M.
    De Zeeuw, Chris I.
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2021, 15