Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction

被引:93
|
作者
Li, Chen [1 ]
Wang, Yuwei [1 ]
Xiao, Nan [1 ]
Li, Hongqiang [1 ]
Ji, Yongqiang [1 ]
Guo, Zhen [1 ]
Liu, Chang [1 ]
Qiu, Jieshan [1 ,2 ]
机构
[1] Dalian Univ Technol, PSU DUT Joint Ctr Energy Res, Liaoning Key Lab Energy Mat & Chem Engn, State Key Lab Fine Chem,Sch Chem Engn, Dalian 116024, Liaoning, Peoples R China
[2] Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL REDUCTION; GRAPHENE; PERFORMANCE; ELECTROREDUCTION; NANOTUBES; DIOXIDE; BIOMASS;
D O I
10.1016/j.carbon.2019.05.042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Efficient CO2 electroreduction over nitrogen-doped carbon catalysts has aroused tremendous interests over the past decades. However, it still remains a great challenge to develop a carbon-based electrocatalysts with high efficiency. Herein, we develop a facile and scalable ammonia etching strategy to synthesis nitrogen-doped porous carbon from earth-abundant coal as an efficient metal-free catalyst for CO2 electroreduction. Benefitting from the synergistic effect of well-developed porous nanostructure, abundant exposed nitrogen defects and proper ratio of pyridinic-N to pyrrolic-N, the coal-derived nitrogen-doped porous carbon enables efficient production of CO with a high Faradaic efficiency (92%) at -0.6 V versus the reversible hydrogen electrode. The simplification of the synthesis may shed a new light on the design of N-doped porous carbon electrocatalysts. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 50 条
  • [21] Study on a nitrogen-doped porous carbon from oil sludge for CO2 adsorption
    Meng, Fanzhi
    Gong, Zhiqiang
    Wang, Zhenbo
    Fang, Peiwen
    Li, Xiaoyu
    FUEL, 2019, 251 : 562 - 571
  • [22] Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction
    Wang, Haojing
    Wu, Xiaodong
    Liu, Guanyu
    Wu, Shuyang
    Xu, Rong
    NANO RESEARCH, 2023, 16 (04) : 4546 - 4553
  • [23] Rational design of hollow nitrogen-doped carbon supported nickel nanoparticles for efficient electrocatalytic CO2 reduction
    Zhou, Lingling
    Qu, Zhenping
    Fu, Liang
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [24] Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction
    Haojing Wang
    Xiaodong Wu
    Guanyu Liu
    Shuyang Wu
    Rong Xu
    Nano Research, 2023, 16 : 4546 - 4553
  • [25] Monolithic Nitrogen-Doped Carbon Electrode with Hierarchical Porous Structure for Efficient Electrochemical CO2 Reduction
    Zhang, Junwei
    Wang, Kang
    Wang, Xitao
    Li, Xingang
    ACS APPLIED MATERIALS & INTERFACES, 2024, : 54092 - 54104
  • [26] Agar-Derived Nitrogen-Doped Porous Carbon for CO2 Adsorption
    Xu, Jianguo
    Cui, Hongmin
    Shi, Jinsong
    Yan, Nanfu
    Liu, Yuewei
    Li, Dan
    CHEMISTRYSELECT, 2018, 3 (39): : 10977 - 10982
  • [27] Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2 Capture
    Hao, Guang-Ping
    Li, Wen-Cui
    Qian, Dan
    Lu, An-Hui
    ADVANCED MATERIALS, 2010, 22 (07) : 853 - +
  • [28] Effects of nitrogen and oxygen on electrochemical reduction of CO2 in nitrogen-doped carbon black
    Zeng, Qingting
    Yang, Guangxing
    Chen, Jianhao
    Zhang, Qiao
    Liu, Zhiting
    Qin, Binhao
    Peng, Feng
    CARBON, 2023, 202 : 1 - 11
  • [29] Facile Synthesis of Nitrogen-Doped Porous Carbon for Selective CO2 Capture
    He, Jiajun
    To, John
    Mei, Jianguo
    Bao, Zhenan
    Wilcox, Jennifer
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 2144 - 2151
  • [30] High efficiency and selectivity from synergy: Bi nanoparticles embedded in nitrogen doped porous carbon for electrochemical reduction of CO2 to formate
    Zhang, Dingbin
    Tao, Zetian
    Feng, Feilong
    He, Beibei
    Zhou, Wei
    Sun, Jian
    Xu, Jianmei
    Wang, Qing
    Zhao, Ling
    ELECTROCHIMICA ACTA, 2020, 334