Symplectic embeddings and special Kahler geometry of CP(n-1,1)

被引:10
|
作者
Sabra, WA
机构
[1] Roy. Holloway and Bedford New Coll., University of London, Egham Surrey
关键词
D O I
10.1016/S0550-3213(96)00697-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The embedding of the isometry group of the coset spaces SU(1,n)/[U(I) x SU(n)] in Sp (2n + 2, R) is discussed. Knowledge of such embedding provides a tool for the determination of the holomorphic prepotential characterizing the special geometry of these manifolds and necessary in the superconformal tensor calculus of N = 2 supergravity. It is demonstrated that there exist certain embeddings for which the homogeneous prepotential does not exist. Whether a holomorphic function exists or not, the dependence of the gauge kinetic terms on the scalars characterizing these cosets in N = 2 supergravity theory can be determined from the knowledge of the corresponding embedding, a la Gaillard and Zumino. Our results are used to study some of the duality symmetries of heterotic compactifications of orbifolds with Wilson lines.
引用
收藏
页码:629 / 649
页数:21
相关论文
共 50 条
  • [21] TOPOLOGICAL SUSCEPTIBILITY AND STRING TENSION IN CP(N-1) MODELS
    CAMPOSTRINI, M
    ROSSI, P
    VICARI, E
    NUCLEAR PHYSICS B, 1993, : 830 - 833
  • [22] SUPERSPIN PROJECTION OPERATORS FOR THE SUPERSYMMETRIC CP(N-1)-MODEL
    GAIGG, P
    SCHWEDA, M
    PIGUET, O
    PHYSICS LETTERS B, 1984, 147 (1-3) : 107 - 110
  • [23] Tensor renormalization group analysis of CP(N-1) model
    Kawauchi, Hikaru
    Takeda, Shinji
    PHYSICAL REVIEW D, 2016, 93 (11)
  • [24] FINITE-SIZE-SCALING IN CP(N-1) MODELS
    ROSSI, P
    VICARI, E
    PHYSICAL REVIEW D, 1993, 48 (08): : 3869 - 3883
  • [25] BATALIN-TYUTIN QUANTIZATION OF THE CP(N-1) MODEL
    BANERJEE, N
    GHOSH, S
    BANERJEE, R
    PHYSICAL REVIEW D, 1994, 49 (04): : 1996 - 2000
  • [26] CP(N-1) MODEL WITH A CHERN-SIMONS TERM
    FERRETTI, G
    RAJEEV, SG
    MODERN PHYSICS LETTERS A, 1992, 7 (23) : 2087 - 2094
  • [27] Kahler geometry for su(1,N|M) superconformal mechanics
    Khastyan, Erik
    Krivonos, Sergey
    Nersessian, Armen
    PHYSICAL REVIEW D, 2022, 105 (02)
  • [28] DYNAMICS OF SOLUTIONS OF THE CP(N-1) MODELS IN (2+1) DIMENSIONS
    STOKOE, I
    ZAKRZEWSKI, WJ
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1987, 34 (04): : 491 - 496
  • [29] (n-1,1)共轭边值问题的多解性
    白占兵
    吕海深
    石油大学学报(自然科学版), 1998, (06) : 116 - 118
  • [30] Positive solutions for (n-1,1) conjugate boundary value problems
    Eloe, PW
    Henderson, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) : 1669 - 1680