Molecular stacking structure and field-effect transistor characteristics of crystalline poly-(3-hexylthiophene)-block-syndiotactic polypropylene through solvent selectivity

被引:7
|
作者
Lo, Chen-Tsyr [1 ]
Lin, Chih-Jung [1 ]
Lee, Jing-Yu [2 ]
Tung, Shih-Huang [3 ]
Tsai, Jing-Cherng [2 ]
Chen, Wen-Chang [1 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan
[2] Natl Chung Cheng Univ, Dept Chem Engn, Chiayi 62142, Taiwan
[3] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 10617, Taiwan
来源
RSC ADVANCES | 2014年 / 4卷 / 44期
关键词
COIL BLOCK-COPOLYMERS; DIBLOCK COPOLYMERS; CHARGE-TRANSPORT; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); THIN-FILMS; SYNDIOTACTIC POLYPROPYLENE; EPITAXIAL CRYSTALLIZATION; CONJUGATED POLYMERS; EFFECT MOBILITIES; HIGH-EFFICIENCY;
D O I
10.1039/c4ra03571b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate the molecular packing structures, morphologies and field-effect characteristics of the crystalline-crystalline poly(3-hexylthiophene)-block-syndiotactic polypropylene block copolymers (P3HT-b-sPP) using different solvent mixtures of chloroform-cyclohexane (CF-CH). For the P3HT-b-sPP with a shorter sPP segment length, the increase of CH solvent content led to the P3HT domain with highly crystalline nanofibrillar networks and thus improved the charge transporting characteristics. For the P3HT-b-sPPs with a longer sPP segment length, well-defined microstructure and device characteristics were only observed at the 70 vol% CF content. Furthermore, the self-encapsulation of the insulating sPP blocks effectively improved the air stability of the P3HT-b-sPP field transistor devices. This work highlights the significance of solvent selectivity and rod/coil block ratios on the molecular packing and the organic field-effect transistor performances.
引用
收藏
页码:23002 / 23009
页数:8
相关论文
共 50 条
  • [21] Change in Electronic States in the Accumulation Layer at Interfaces in a Poly(3-hexylthiophene) Field-Effect Transistor and the Impact of Encapsulation
    Park, Byoungnam
    Kim, Y. J.
    Graham, Samuel
    Reichmanis, Elsa
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (09) : 3545 - 3551
  • [22] Field-effect transistor characteristics and microstructure of regioregular poly(3-hexylthiophene) on alkylsilane self-assembled monolayers prepared by microcontact printing
    Kushida, Takashi
    Nagase, Takashi
    Naito, Hiroyoshi
    ORGANIC ELECTRONICS, 2010, 11 (07) : 1323 - 1326
  • [23] Solvent vapor-mediated poly (3-hexylthiophene) nanowire formation and its effect on field-effect mobility.
    Cho, KW
    Kim, DH
    Park, YD
    Jang, YS
    Im, K
    Chang, TY
    Kim, YH
    Moon, DG
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1130 - U1130
  • [24] Development of silsesquioxane-type gate insulating thin films for poly(3-hexylthiophene)-based field-effect transistor
    Hamada, T.
    Tomatsu, K.
    Nagase, T.
    Kobayashi, T.
    Murakami, S.
    Watanabe, M.
    Naito, H.
    Matsukawa, K.
    IDW '07: PROCEEDINGS OF THE 14TH INTERNATIONAL DISPLAY WORKSHOPS, VOLS 1-3, 2007, : 599 - +
  • [25] High-performance flexible organic field-effect transistor based on highly ordered poly(3-hexylthiophene) nanowires
    Lu, Liangkun
    Si, Meng
    Jin, Shaobo
    Zhao, Zirui
    Liu, Xuling
    Dai, Liguo
    Zhou, Yueming
    Yang, Hongjie
    Ye, Guoyong
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [26] Fabrication of polymer Langmuir-Blodgett films containing regioregular poly(3-hexylthiophene) for application to field-effect transistor
    Matsui, J
    Yoshida, S
    Mikayama, T
    Aoki, A
    Miyashita, T
    LANGMUIR, 2005, 21 (12) : 5343 - 5348
  • [27] Morphology and optoelectronic characteristics of organic field-effect transistors based on blends of polylactic acid and poly(3-hexylthiophene)
    Chia-Jung Cho
    Shu-Yuan Chen
    Chi-Ching Kuo
    Loganathan Veeramuthu
    Ai-Nhan Au-Duong
    Yu-Cheng Chiu
    Shang-Hung Chang
    Polymer Journal, 2018, 50 : 975 - 987
  • [28] Morphology and optoelectronic characteristics of organic field-effect transistors based on blends of polylactic acid and poly(3-hexylthiophene)
    Chol, Chia-Jung
    Chen, Shu-Yuan
    Kuo, Chi-Ching
    Veeramuthu, Loganathan
    Au-Duong, Ai-Nhan
    Chiu, Yu-Cheng
    Chang, Shang-Hung
    POLYMER JOURNAL, 2018, 50 (10) : 975 - 987
  • [29] Field-effect transistor structures on the basis of poly(3-hexylthiophene), fullerene derivatives [60]PCBM, [70]PCBM, and nickel nanoparticles
    Aleshin, A. N.
    Shcherbakov, I. P.
    Trapeznikova, I. N.
    Petrov, V. N.
    PHYSICS OF THE SOLID STATE, 2016, 58 (09) : 1882 - 1890
  • [30] Inkjet-Printed Organic Field-Effect Transistor by Using Composite Semiconductor Material of Carbon Nanoparticles and Poly(3-Hexylthiophene)
    Lin, Chih-Ting
    Hsu, Chun-Hao
    Lee, Chang-Hung
    Wu, Wen-Jung
    JOURNAL OF NANOTECHNOLOGY, 2011, 2011