Size Optimization using Normalized Radial Basis Function and Bat Algorithm

被引:0
|
作者
Alemu, Lemma Tamiru [1 ]
Hashim, Fakhruldin Mohd [1 ]
机构
[1] Univ Teknol PETRONA, Deep Water Technol Res Cluster, Seri Iskandar 31750, Perak, Malaysia
关键词
Radial Basis Function; Bat Algorithm; Size Optimization;
D O I
10.4028/www.scientific.net/AMR.845.631
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is intended to demonstrate the use of normalized radial basis function (NRBF) network and Bat Algorithm (BA) for size optimization of a mechanical part under static loading. The data needed for developing the NRBF model is generated simulating a parameterized CAD model in ANSYS Workbench 14.5. Plausible input data for the CAD model is created using Latin Hypercube Sampling (LHS) method. A torque arm is considered to proof the concept. The comparison between the result obtained from the proposed method and the solution from ANSYS Workbench itself shows that, the NRBF-BA model is indeed effective in providing a reasonable solution for a moderately complex problem.
引用
收藏
页码:631 / 636
页数:6
相关论文
共 50 条
  • [31] Comparative study of honeycomb optimization using Kriging and radial basis function
    Shabram Sadeghi Esfahlani
    Hassan Shirvani
    Sunny Nwaubani
    Ayoub Shirvani
    Habtom Mebrahtu
    Theoretical & Applied Mechanics Letters, 2013, 3 (03) : 16 - 20
  • [32] PLS algorithm for radial basis function networks
    Wang, Y
    Rong, G
    Wang, SQ
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 4748 - 4753
  • [33] A radial basis function method for global optimization
    Gutmann, HM
    JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (03) : 201 - 227
  • [34] Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    González, J
    Rojas, I
    Ortega, J
    Pomares, H
    Fernández, J
    Díaz, AF
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06): : 1478 - 1495
  • [35] An optimization method based on radial basis function
    Ishikawa, T
    Matsunami, M
    IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) : 1868 - 1871
  • [36] Classification using networks of normalized radial basis functions.
    Bugmann, G
    INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION, 1999, : 435 - 444
  • [37] A Radial Basis Function Method for Global Optimization
    H.-M. Gutmann
    Journal of Global Optimization, 2001, 19 : 201 - 227
  • [38] Optimization by Canonical Analysis in a Radial Basis Function
    Praga-Alejo, Rolando J.
    Cantu-Sifuentes, Mario
    Gonzalez-Gonzalez, David S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (19) : 6487 - 6495
  • [39] Adaptive Linear and Normalized Combination of Radial Basis Function Networks for Function Approximation and Regression
    Wu, Yunfeng
    Luo, Xin
    Zheng, Fang
    Yang, Shanshan
    Cai, Suxian
    Ng, Sin Chun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [40] A Stochastic Adaptive Radial Basis Function Algorithm for Costly Black-Box Optimization
    Zhou Z.
    Bai F.-S.
    Journal of the Operations Research Society of China, 2018, 6 (4) : 587 - 609