Human Pose Estimation by a Series of Residual Auto-Encoders

被引:2
|
作者
Farrajota, M. [1 ]
Rodrigues, Joao M. F. [1 ]
du Buf, J. M. H. [1 ]
机构
[1] Univ Algarve, LARSyS, Vis Lab, P-8005139 Faro, Portugal
关键词
Human pose; ConvNet; Neural networks; Auto-encoders;
D O I
10.1007/978-3-319-58838-4_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pose estimation is the task of predicting the pose of an object in an image or in a sequence of images. Here, we focus on articulated human pose estimation in scenes with a single person. We employ a series of residual auto-encoders to produce multiple predictions which are then combined to provide a heatmap prediction of body joints. In this network topology, features are processed across all scales which captures the various spatial relationships associated with the body. Repeated bottom-up and top-down processing with intermediate supervision for each auto-encoder network is applied. We propose some improvements to this type of regression-based networks to further increase performance, namely: (a) increase the number of parameters of the auto-encoder networks in the pipeline, (b) use stronger regularization along with heavy data augmentation, (c) use sub-pixel precision for more precise joint localization, and (d) combine all auto-encoders output heatmaps into a single prediction, which further increases body joint prediction accuracy. We demonstrate state-of-the-art results on the popular FLIC and LSP datasets.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 50 条
  • [1] Camera Pose Auto-encoders for Improving Pose Regression
    Shavit, Yoli
    Keller, Yosi
    COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 140 - 157
  • [2] Fisher Auto-Encoders
    Elkhalil, Khalil
    Hasan, Ali
    Ding, Jie
    Farsiu, Sina
    Tarokh, Vahid
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 352 - 360
  • [3] Ornstein Auto-Encoders
    Choi, Youngwon
    Won, Joong-Ho
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2172 - 2178
  • [4] Transforming Auto-Encoders
    Hinton, Geoffrey E.
    Krizhevsky, Alex
    Wang, Sida D.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 44 - 51
  • [5] Correlated Variational Auto-Encoders
    Tang, Da
    Liang, Dawen
    Jebara, Tony
    Ruozzi, Nicholas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [6] An ensemble of autonomous auto-encoders for human activity recognition
    Garcia, Kemilly Dearo
    de Sa, Claudio Rebelo
    Poel, Mannes
    Carvalho, Tiago
    Mendes-Moreira, Joao
    Cardoso, Joao M. P.
    Carvalho, Andre C. P. L. F. de
    Kok, Joost N.
    NEUROCOMPUTING, 2021, 439 : 271 - 280
  • [7] Hyperspherical Variational Auto-Encoders
    Davidson, Tim R.
    Falorsi, Luca
    De Cao, Nicola
    Kipf, Thomas
    Tomczak, Jakub M.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 856 - 865
  • [8] Directed Graph Auto-Encoders
    Kollias, Georgios
    Kalantzis, Vasileios
    Ide, Tsuyoshi
    Lozano, Aurelie
    Abe, Naoki
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7211 - 7219
  • [9] Graph Attention Auto-Encoders
    Salehi, Amin
    Davulcu, Hasan
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 989 - 996
  • [10] Conservativeness of Untied Auto-Encoders
    Im, Daniel Jiwoong
    Belghazi, Mohamed Ishmael
    Memisevic, Roland
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1694 - 1700