Correlated Variational Auto-Encoders

被引:0
|
作者
Tang, Da [1 ]
Liang, Dawen [2 ]
Jebara, Tony [1 ,2 ]
Ruozzi, Nicholas [3 ]
机构
[1] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[2] Netflix Inc, Los Gatos, CA USA
[3] Univ Texas Dallas, Erik Jonsson Sch Engn & Comp Sci, Richardson, TX 75083 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational Auto-Encoders (VAEs) are capable of learning latent representations for high dimensional data. However, due to the i.i.d. assumption, VAEs only optimize the singleton variational distributions and fail to account for the correlations between data points, which might be crucial for learning latent representations from datasets where a priori we know correlations exist. We propose Correlated Variational Auto-Encoders (CVAEs) that can take the correlation structure into consideration when learning latent representations with VAEs. CVAEs apply a prior based on the correlation structure. To address the intractability introduced by the correlated prior, we develop an approximation by the average of a set of tractable lower bounds over all maximal acyclic subgraphs of the undirected correlation graph. Experimental results on matching and link prediction on public benchmark rating datasets and spectral clustering on a synthetic dataset show the effectiveness of the proposed method over baseline algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Hyperspherical Variational Auto-Encoders
    Davidson, Tim R.
    Falorsi, Luca
    De Cao, Nicola
    Kipf, Thomas
    Tomczak, Jakub M.
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 856 - 865
  • [2] Monte Carlo Variational Auto-Encoders
    Thin, Achille
    Kotelevskii, Nikita
    Durmus, Alain
    Panov, Maxim
    Moulines, Eric
    Doucet, Arnaud
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7258 - 7267
  • [3] Consistency Regularization for Variational Auto-Encoders
    Sinha, Samarth
    Dieng, Adji B.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] Radon-Sobolev Variational Auto-Encoders
    Turinici, Gabriel
    [J]. NEURAL NETWORKS, 2021, 141 : 294 - 305
  • [5] Self-Supervised Variational Auto-Encoders
    Gatopoulos, Ioannis
    Tomczak, Jakub M.
    [J]. ENTROPY, 2021, 23 (06)
  • [6] Genomic data imputation with variational auto-encoders
    Qiu, Yeping Lina
    Zheng, Hong
    Gevaert, Olivier
    [J]. GIGASCIENCE, 2020, 9 (08):
  • [7] InvMap and Witness Simplicial Variational Auto-Encoders
    Medbouhi, Aniss Aiman
    Polianskii, Vladislav
    Varava, Anastasia
    Kragic, Danica
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (01): : 199 - 236
  • [8] Automatic selection of latent variables in variational auto-encoders
    Jouffroy, Emma
    Giremus, Audrey
    Berthoumieu, Yannick
    Bach, Olivier
    Hugget, Alain
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1407 - 1411
  • [9] Discriminative regularization of the latent manifold of variational auto-encoders
    Kossyk, Ingo
    Marton, Zoltan-Csaba
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 61 : 121 - 129
  • [10] Unsupervised Anomaly Localization Using Variational Auto-Encoders
    Zimmerer, David
    Isensee, Fabian
    Petersen, Jens
    Kohl, Simon
    Maier-Hein, Klaus
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 289 - 297