Correlated Variational Auto-Encoders

被引:0
|
作者
Tang, Da [1 ]
Liang, Dawen [2 ]
Jebara, Tony [1 ,2 ]
Ruozzi, Nicholas [3 ]
机构
[1] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[2] Netflix Inc, Los Gatos, CA USA
[3] Univ Texas Dallas, Erik Jonsson Sch Engn & Comp Sci, Richardson, TX 75083 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational Auto-Encoders (VAEs) are capable of learning latent representations for high dimensional data. However, due to the i.i.d. assumption, VAEs only optimize the singleton variational distributions and fail to account for the correlations between data points, which might be crucial for learning latent representations from datasets where a priori we know correlations exist. We propose Correlated Variational Auto-Encoders (CVAEs) that can take the correlation structure into consideration when learning latent representations with VAEs. CVAEs apply a prior based on the correlation structure. To address the intractability introduced by the correlated prior, we develop an approximation by the average of a set of tractable lower bounds over all maximal acyclic subgraphs of the undirected correlation graph. Experimental results on matching and link prediction on public benchmark rating datasets and spectral clustering on a synthetic dataset show the effectiveness of the proposed method over baseline algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Conservativeness of Untied Auto-Encoders
    Im, Daniel Jiwoong
    Belghazi, Mohamed Ishmael
    Memisevic, Roland
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1694 - 1700
  • [42] Isometric Quotient Variational Auto-Encoders for Structure-Preserving Representation Learning
    Huh, In
    Jeong, Changwook
    Choe, Jae Myung
    Kim, Young-Gu
    Kim, Dae Sin
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [43] Reconstruction probability-based anomaly detection using variational auto-encoders
    Iqbal T.
    Qureshi S.
    [J]. International Journal of Computers and Applications, 2023, 45 (03) : 231 - 237
  • [44] Audio-Visual Speech Enhancement Using Conditional Variational Auto-Encoders
    Sadeghi, Mostafa
    Leglaive, Simon
    Alameda-Pineda, Xavier
    Girin, Laurent
    Horaud, Radu
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 : 1788 - 1800
  • [45] Deep Principal Correlated Auto-Encoders With Application to Imaging and Genomics Data Integration
    Li, Gang
    Wang, Chao
    Han, De-Peng
    Zhang, Yi-Pu
    Peng, Peng
    Calhoun, Vince D.
    Wang, Yu-Ping
    [J]. IEEE ACCESS, 2020, 8 : 20093 - 20107
  • [46] On the Quality of Deep Representations for Kepler Light Curves Using Variational Auto-Encoders
    Mena, Francisco
    Olivares, Patricio
    Bugueno, Margarita
    Molina, Gabriel
    Araya, Mauricio
    [J]. SIGNALS, 2021, 2 (04): : 706 - 728
  • [47] Adaptive Augmentation of Medical Data Using Independently Conditional Variational Auto-Encoders
    Pesteie, Mehran
    Abolmaesumi, Purang
    Rohling, Robert N.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (12) : 2807 - 2820
  • [48] scVAE: variational auto-encoders for single-cell gene expression data
    Gronbech, Christopher Heje
    Vording, Maximillian Fornitz
    Timshel, Pascal N.
    Sonderby, Casper Kaae
    Pers, Tune H.
    Winther, Ole
    [J]. BIOINFORMATICS, 2020, 36 (16) : 4415 - 4422
  • [49] ARTIFICIAL BANDWIDTH EXTENSION USING CONDITIONAL VARIATIONAL AUTO-ENCODERS AND ADVERSARIAL LEARNING
    Bachhav, Pramod
    Todisco, Massimiliano
    Evans, Nicholas
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6924 - 6928
  • [50] Return of the normal distribution: Flexible deep continual learning with variational auto-encoders
    Hong Y.
    Mundt M.
    Park S.
    Uh Y.
    Byun H.
    [J]. Neural Networks, 2022, 154 : 397 - 412